

www.francetelecom.com/

Research & Development

Jade Semantics Add-on Programmer's guide

Author: Vincent PAUTRET
Version: 1.0

Copyright © 2005-2006 France Telecom

France Telecom
Research & Development

2, av. Pierre Marzin
22307 Lannion Cedex — France
Phone: +33 296 051 111

SA
 a

u
ca

pi
ta

l d
e

9
86

8
45

9
07

2
€

- 3
80

 1
29

 8
66

 R
C

S
Pa

ris

Jade Semantics Add-on Programmer's guide

Page 2 of 62

Table of Contents
1Introduction.. 4

1.1Concepts..4
1.2Semantic interpretation algorithm.. 5
1.3Packages overview..6

2Jade Semantic Agent.. 7
2.1The SemanticAgent interface and the SemanticAgentBase class... 7
2.2The SemanticCapabilities class.. 7
2.3Adding semantic capabilities to an existing Jade agent..11

3FIPA SL language handling..12
3.1Grammar... 12
3.2Normal form of SL expression... 14
3.3Pattern matching... 14

3.3.1Generality.. 14
3.3.2AndNode & OrNode... 17
3.3.3EqualsNode... 17
3.3.4Optional parameters.. 18

3.4Dynamic building of SL expressions.. 18
4Semantic Representation.. 19
5Belief base.. 20

5.1Principles.. 20
5.2The Filter belief base.. 22

5.2.1Filters.. 23
5.2.1.1Assert filters.. 23
5.2.1.2Query filters...26
5.2.1.3FiltersDefinition class..30
5.2.1.4Adding new filters... 32
5.2.1.5Removing beliefs from the base.. 32

5.2.2Observers...32
6Semantic Actions..36

6.1Semantic action table.. 37
6.2Semantic action behaviours.. 38
6.3Communicative actions...40
6.4Adding new actions.. 42

7StandardCustomization...43
8Planner..46
9Semantic interpretation principles.. 46

9.1Semantic interpretation principles table... 46
9.2List of generic SIPs... 47
9.3Adding new SIPs...50
9.4Examples of semantic interpretations... 51
9.5Example of applicative SIPs... 55

10Useful classes... 56
10.1Finder class... 56
10.2Tools class...57

Jade Semantics Add-on Programmer's guide

Page 3 of 62

10.3Util class... 57
11Appendix.. 57

Belief
base

Standard
customization

Planner

Jade Semantics Add-on Programmer's guide

Page 4 of 62

This guide assumes the reader to be familiar with the FIPA standards, at least with the Agent
Management specifications (FIPA no. 23), the Agent Communication Language, and the ACL
Message Structure (FIPA no. 61). The majority of code examples are extracted from the
temperature application demonstration.

1 Introduction
This add-on aims at taking better benefit from the semantic dimension of the FIPA-ACL language,
which is currently not explicitly taken into account in the JADE platform.

At a basic level, this new framework checks syntactic and semantic consistency of received and sent
messages (for example, it is not possible to send an Inform message with a content representing an
action instead of a proposition). At a higher level, "semantic agents" developed upon this
framework automatically handle each incoming message and react according to its formal semantics
as specified by the FIPA standard. For example, no explicit programming is required to handle a
Query-Ref, a Call-For-Proposal or a Subscribe message. To this end, a proper API has been defined
to customize the behaviour of semantic agents. Roughly speaking, developing a semantic agent
mainly consists in setting up its initial beliefs, the rules for handling its beliefs, the domain-specific
actions it is expected to handle, and in customizing its generic interpretation behaviour (such as its
cooperative abilities).

We hope this new way of programming JADE agents will simplify their coding by relieving
developers of boring and recurrent tasks such as parsing and analysing incoming messages. We also
envision an increased interoperability between the resulting semantic agents because of their
conformance to the actual meaning of the exchanged messages.

1.1 Concepts

Semantic action
table

SIP
table

SR

SR

Semantic Representation

Figure 1: Semantics framework components

JSA

Interpretation
 behaviour

List of SRs to be analyzed

add

remove consume

produce

Jade Semantics Add-on Programmer's guide

Page 5 of 62

A Jade Semantic Agent (JSA) is a JADE agent build upon the Jade Semantics framework. The
framework consists of seven main components:

• Semantic Representations (or SR) are FIPA-SL expressions that represent the sense of the
message according to the FIPA-ACL semantics (see paragraph 4). For example, the formula:

(B ja (done
(action s

(CONFIRM :sender s
:receiver ja
:content “(p)”))

true))

stating the receiver (ja) believes the sender (s) has just issued the act CONFIRM;

• The belief base is another component that stores the beliefs of the agent. A belief can be a
simple predicate, or a more complex formula;

• The semantic action table stores the description (pre- and post-condition) and also the code
of all actions the agent can deal with. Each action is associated to a semantic behaviour that
performs the action;

• The standard customization object is the means the programmer uses to customize the
interpretation behaviour in respect to belief adoption, intention transfer, and so on;

• The planner is a component used to find a plan that reaches a given goal;

• The Semantic Interpretation Principles table. This table holds the basic principles for
interpreting messages according to the FIPA-ACL semantics. Each principle (or SIP) may
handle SR of a particular form, produce other SRs, add or remove behaviours, or update the
belief base. For example, the ActionFeatures SIP produces SR representing the semantic
features of a received act (mainly rational effect and feasibility precondition);

• Last, the interpretation behaviour, which performs the interpretation algorithm, consists in
producing and consuming Semantic Representation.

1.2 Semantic interpretation algorithm
The interpretation algorithm is implemented by an object of the class
SemanticInterpreterBehaviour (extends jade.core.behaviours.CyclicBehaviour). It
applies on messages, but also on internal events the form of which are SL expressions. It is a loop,
which applies all possible ordered SIPs (stored in the SIP table) to all existing SR according to the
SIP index of the SR, and stops when one of the following conditions holds:

• the SR list becomes empty,

• no SIP can be further applied to any SR, (in this case the remaining SR are asserted in the
belief base)

• one of the SR is a false formula (e.g., in the case of inconsistency). In this case, a Not
Understood message is sent.

Jade Semantics Add-on Programmer's guide

Page 6 of 62

1.3 Packages overview
The semantics add-on is composed of the following packages:
jade.semantics: parent package of the semantics add-on.
├ .actions:
 | |

contains the definition of semantic actions and a set of classes to
manage them.

 | ├ .operators:
 | |

contains the classes that define the alternative and sequence of actions
operators.

 | └ .performatives: contains all the FIPA communicative acts except the proxy and the
propagate acts, which will be added in a future version.

├ .behaviours:
 |

package that provides classes to define and manage semantic
behaviours, and some standard behaviours.

├ .interpreter: this package implements the kernel of the semantics add-on.
 | └ .sips:
 |

contains all the semantic interpretation principles needed by a JSA to
interpret correctly the informations it receives.

├ .kbase:
 | |

contains a set of generic classes to implement a belief base for the
JSA. It provides an implementation of this kind of base based on
filters.

 | ├ .filters:
 | | |

sub-package that provides filters definition. Filters are specifics to the
provided belief base implementation.

 | | ├ .assertion: this sub-package provides classes needed to define assertion filters.
 | | ├ .query: this sub-package provides classes needed to define query filters.
 | └ .observers:
 |

this sub-package contains observers which are used to supervise the
changes in a belief base.

├ .lang.sl:
 | |

package is provided to handle SL Language according to FIPA
standard specifications.

 | ├ .content:
 | |

this package provides classes to handle the contents.

 | ├ .grammar:
 | | |

contains all the classes implementing the abstract syntax and the
associated basic mechanism.

 | | └ .operations: this sub-package contains all the operations enable on the grammar.
 | ├ .parser:
 | |

this package contains classes that implement a parser and an unparser
for the SL concrete syntax.

 | └ .tools:
 |

this package provides useful tools to handle SL formulae.

└ .planner: contains a Java interface that all planners should implement in order
to be readily integrated with the semantics add-on.

Jade Semantics Add-on Programmer's guide

Page 7 of 62

This guide is structured as follow. Chapter 2 presents JSA and the way to create it. Chapter 3 details
the FIPA-SL language and the associated tools. Then we describe the components of the
framework: the Semantic Representation (chapter 4), the belief base and the implementation, which
is provided within the framework (chapter 5), the semantic actions (chapter 6), the rules to
customize a JSA (chapter 7), a brief overview of planner (chapter 8). and finally the semantic
interpretation principles (chapter 9). Chapter 10 gives some rules to use other ontologies and
content languages. The last chapter presents useful classes.

2 Jade Semantic Agent
This part describes the way to create a JSA and the semantics add-on classes that support the
development of a JSA.

2.1 The SemanticAgent interface and the SemanticAgentBase class
The SemanticAgent interface contains the minimal methods which an agent must implement to be
a JSA. These methods are:

• the getSemanticCapabilities() method which returns the SemanticCapabilities
object associated to the semantic agent;

• the getAgent() method which returns the JADE agent corresponding to this semantic agent.

The SemanticAgentBase class represents a common base class for user defined a JSA. Therefore,
from the programmer's point of view, a JSA is an instance of a user defined Java class that
implements the interface SemanticAgent, or more simply that extends the SemanticAgentBase
class.

Then, the simplest semantic agent is:

public class MyJSA extends SemanticAgentBase {}

Even if such an agent seems to be empty:

• It automatically answers invalid messages with a not-understood message;

• It can, for example, interpret the content of an inform message, and then answers queries
about this content. For example, if I send an inform to this agent the content of which is
(temperature 10), and then query about the temperature, the agent answers (temperature 10).
However, if I send another inform to this agent with the content (temperature 11), and then
query about the temperature the answer may be (temperature 10), because this agent does not
correctly handle the temperature predicate. We will see later how such a predicate can be
handled consistently.

• Other acts like request-when, subscribe, and so on, are natively handled.

2.2 The SemanticCapabilities class
More generally, a JSA requires mainly a SemanticCapabilities object which defines domain
specific actions to be handled by the agent, the implementation of the belief base of the agent,

Jade Semantics Add-on Programmer's guide

Page 8 of 62

including rules to handle domain specific beliefs (for example, the temperature predicate), and the
StandardCustomization object used by the agent to customize the SIPs.

The SemanticAgentBase class uses a default SemanticCapabilities object providing the
minimum (the default) capabilities:

• the default semantic action table: an jade.leap.ArrayList filled with FIPA-ACL
communicative acts;

• the default semantic interpretation principles table: a jade.leap.ArrayList filled with the
predefined list of SIPs;

• the belief base is an instance of FilterKBase;

• the standard customization object is an instance of StandardCustomizationAdapter,
which does nothing;

• no planner.

The programmer has to define his own SemanticCapabilities class to take account his/her
application features. For this purpose, the SemanticCapabilities class provides convenient
methods to customize all the components:

• The setupSemanticActions() method sets the semantic actions. It creates the semantic
action table and loads the communicative actions;

• The setupSemanticInterpretationPrinciples() method sets the semantic
interpretation principles. It creates the semantic interpretation principle table and loads the
principles into the table;

• The setupKbase() method sets the belief base. By default, the belief base is a FilterKbase
instance.

• The setupPlanner() method sets the planner. By default, no planner is provided by the
semantics framework;

• The setupStandardCustomization() method customizes the usage of SIPs.

The following code shows a JSA extending SemanticAgentBase class, which redefined a specific
SemanticCapabilities class.

public class MyJSA extends SemanticAgentBase {
class MySemanticCapabilities extends SemanticCapabilities {

protected void setupSemanticActions() {...}
protected void setupKbase() {...}
protected void setupStandardCustomization() {...}
...

}
public MyJSA() {

semanticCapabilities = new MySemanticCapabilities();
}
public void setup() {

super.setup();
...

}
}

Jade Semantics Add-on Programmer's guide

Page 9 of 62

Like for a classical JADE agent, the setup() method of a JSA is the point where any application-
defined agent activity starts. The programmer can redefine the setup() method as for a classical
JADE agent, and should call the super method which properly installs the semantic capabilities. In
this case, s/he can simply override the different setupXXX methods, depending of her/his needs. The
manner of defining these methods is described in the sections corresponding to each component.

The SemanticCapabilities class provides methods to access all the components of a
SemanticAgent: belief base, planner, semantic interpretation table, semantic action table, user
customisation (StandardCustomization class), and the semantic interpreter behaviour:

• The getAgent() method returns the semantic agent to which the semantic capabilities
object is associated;

• The getAgentName() returns the agent name to which the semantic capabilities object is
associated;

• The getMyKBase() method returns the belief base of the agent;

• The getMyPlanner() method returns the planner;

• The getMySemanticActionTable() method returns the semantic action table;

• The getSemanticInterpreterBehaviour() method returns the semantic interpreter
behaviour associated to the agent;

• The getMySemanticInterpretationTable() method returns the semantic interpretation
principles table;

• The getMyStandardCustomization() method returns the standard customisation object.

It is the way to access all the parts of a JSA.

The SemanticCapabilities class provides methods to simply send FIPA-ACL messages. There
are methods to create each kind of message, and one method to send the created message. The
parameters of the methods are the ones used in the message.

• The sendCommunicativeAction(CommunicativeAction) method sends the specified
communicative action.

For all the methods described below, the last parameter correspond to the list of the receivers of the
act. Two prototypes of method exist: the first one with only one Term as last parameter, and the
second one with an array of Terms as last parameter. Only the first one is presented in this
document.

• The createAcceptProposal(ActionExpression, Formula, Term) method creates an
AcceptProposal act. The first parameter is the action expression denoting the action to be
done, and the second parameter gives the conditions of the agreement;

• The createAgree(ActionExpression, Formula, Term) method creates an Agree act.
The first parameter is the action expression denoting the action to be done, and the second
parameter gives the conditions of the agreement;

• The createCancel(ActionExpression, Term) method creates a Cancel act. The first
parameter is the action expression denoting the action the first agent no longer has the

Jade Semantics Add-on Programmer's guide

Page 10 of 62

intention that second agent perform it;

• The createCFP(ActionExpression, IdentifyingExpression, Term) method creates a
Call For Proposal act. The first parameter is the action expression denoting the action to be
done, and the second parameter a referential expression defining a single-parameter
proposition which give the preconditions of the action;

• The createConfirm(Formula, Term) method creates a Confirm act. The first parameter is
the confirmed proposition;

• The createDisconfirm(Formula, Term) method creates a Disconfirm act. The first
parameter is the disconfirmed proposition;

• The createFailure(ActionExpression, Formula, Term) method creates a Failure act.
The first parameter is an action expression denoting the failed action, and the second
parameter is a formula denoting the reason of the failure;

• The createInform(Formula, Term) method creates an Inform act. The first parameter is a
formula denoting the proposition the agent wants to inform the other agent;

• The createNotUnderstood(ActionExpression, Formula, Term) method creates a Not
Understood act. The first parameter is an action expression denoting an not understood
action, and the second parameter is an explanatory reason;

• The createPropose(ActionExpression, Formula, Term) method creates a Propose act.
The first parameter is an action expression denoting the action that the sender is proposing to
perform, and the second parameter is a proposition representing the preconditions of the
performance of the action;

• The createQueryIf(Formula, Term) method creates a QueryIf act. The first parameter is
the proposition the agent wants to know if it is true or not;

• The createQueryRef(IdentifyingExpression, Term) method creates a QueryRef act.
The first parameter is the description of the queried object;

• The createRefuse(ActionExpression, Formula, Term) method creates a Refuse act.
The first parameter is an action expression denoting the action refused to be perform, and the
second parameter is the reason for the refusal;

• The createRejectProposal(ActionExpression, Formula, Formula, Term) method
creates a Reject Proposal act. The first parameter and the second one consist of an action
description and a proposition which formed the original proposal being rejected;

• The createRequest(ActionExpression, Term) method creates a Request act. The first
parameter is the action to perform;

• The createRequestWhen(ActionExpression, Formula, Term) method creates a
Request-When act. The first parameter is the action to be perform by the receiver when a
proposition (the second parameter) becomes true;

• The createRequestWhenever(ActionExpression, Formula, Term) method creates a
Request Whenever act. The first parameter is the action to be perform by the receiver when a
proposition (the second parameter) becomes true and thereafter each time the proposition
becomes true again;

• The createSubscribe(IdentifyingExpression, Term) method creates a Subscribe act.

Jade Semantics Add-on Programmer's guide

Page 11 of 62

The first parameter is the referential expression identifying an observed object.

The three following methods make it possible to create actions Unsubscribe. These actions are not
present in FIPA specifications. They make it possible to finish properly the entire effect of a
Subscribe communicative act.

• The createUnsubscribe(IdentifyingExpression, Term) method creates an
Unsubscribe act. The first parameter is the referential expression identifying the observed
object. This method is used with the pattern ((not (I ??agent (done (action ??receiver
(INFORM-REF :sender ??receiver :receiver (set ??agent) :content ??ire)))))) where ??ire is
replace by the first parameter of the method;

• The createUnsubscribe(ActionExpression, Term) method creates an Unsubscribe
act. This method is used with the pattern ((not (I ??agent (done ??action)))). The ??action
metavariable is replaced by the first parameter of the method;

• The createUnsubscribe(ActionExpression, Formula, Term ...) method creates an
Unsubscribe act. This method is used with the pattern ((or (forall ?e (not (done ?e (not
(B ??receiver ??property))))) (or (not (B ??receiver ??property)) (not (I ??agent (done ??
action)))))). The metavariable ??action is replaced by the first parameter of the method, and
the metavariable ??property is replaced by the second parameter of the method.

Of course, it is not possible to create an InformIf or an InformRef message. For example, in the
case of the InformIf message, it has no sense to inform another agent whether or not a given
proposition is believed.

The following code shows an example of sending a RejectProposal message using these methods.

getSemanticCapabilities().sendCommunicativeAction(
 getSemanticCapabilities().createRejectProposal(action,

selectedCondition,
new TrueNode(),
selectedAgent));

2.3 Adding semantic capabilities to an existing Jade agent
An existing classical JADE agent can be transformed into a JSA by:

• implementing the SemanticAgent interface, and so
• installing semantic capabilities in it.

But this transformation is not easy and the programmer must pay attention to various points:
• The programmer must identify which messages should not be catched by the JSA. If certain

messages miss, certain reactions will not be inevitably coherent with the global behaviour
(memory of the facts). In particular, if Inform messages are not taken into account, some
information will not be assert in the base.

• A semantic agent uses a belief base. If the classical jade agent has already a belief base, it
could be necessarily to make a link between these bases.

• At least, the ontological actions defined within the semantic agent framework can not be
used by the classical agent.

Jade Semantics Add-on Programmer's guide

Page 12 of 62

3 FIPA SL language handling

3.1 Grammar
FIPA-SL expression is the main data type, which the semantic interpretation mechanism relies on.
The semantics framework is supported by an internal “Node” structure based on an abstract
grammar directly defined from the FIPA-SL concrete grammar specification (see FIPA SL Content
Language Specification). Consequently, this internal representation exactly matches the SL
grammar and each element of the SL grammar corresponds to a unique Java class. The complete SL
grammar is shown in Appendix. To date, semantics agents doesn't use at all the Abs structure
provided by the JADE framework, but a bridge between Abs and SL nodes is planed for the next
version of the add-on.

The next figure shows a part of the abstract grammar related to formula.

SL expressions are implemented as Directed Acyclic Graphs. Each node of these graphs represents
an element of the FIPA-SL grammar specification. For example, the formula (I John (B Bob
(temperature 10))), means that John has the intention that Bob knows that the temperature is ten
degrees1. Its representation in the form of graph is shown on figure 3.

1 We distinguish three mental attitudes:
Belief, represented by the “B” operator. (B agt phi) means “it is true that agent agt believes the expression phi is true”;
Intention, represented by the “I” operator. (I agt phi) means “it is true that agent agt intends that expression phi becomes

true and will plan to bring it about”.
Uncertainty, represented by the “U” operator. (U agt phi) means “it is true that agent agt is uncertain of the truth of

phi”.

Figure 2: Part of the SL grammar

FORMULA ::= ATOMIC_FORMULA
| UNARY_LOGICAL_FORMULA
| MODAL_LOGIC_FORMULA

 | ACTION_FORMULA
| QUANTIFIED_FORMULA

 | BINARY_LOGICAL_FORMULA
| meta_formula_reference;

ATOMIC_FORMULA ::= proposition_symbol
 | result
 | predicate
 | true
 | false

| equals;

MODAL_LOGIC_FORMULA ::= belief
 | uncertainty
 | intention
 | persistent_goal;

Jade Semantics Add-on Programmer's guide

Page 13 of 62

It is possible to define additional operations on each kind of node of the SL grammar. Depending on
the needs in SL expression handling, this set of operations can be easily extended. To date, the most
important ones are:

• for the Formula node:
• The getsimplifiedFormula() method computes the normal form (which is logically

equivalent according to the SL semantics) of any SL formula node (this point is more
discussed in section 3.2). For example: SLPatternManip.fromFormula(“(B agt (I
agt p))”).getSimplified() returns a SL formula node representing the (I agt p)
formula.

• The isSubsumedBy(Formula) method checks if the considered SL formula node is
subsumed by a given formula (according to the SL semantics). For example:
SLPatternManip.fromformula(“(not (B agt p))”).isSubsumedBy(
SLPatternManip.fromFormula(“(I agt p)”)) returns true.

• The isMentalAttitude(Term) method checks if the considered SL formula node is a
mental attitude (i.e. Belief, intention, or uncertainty) of the given agent. For example,
SLPatternManip.fromformula(“(B (agent-identifier :name foo)
p)”).isMentalAttitude(SLPatternanip.fromTerm(“(agent-identifier :name
foo)”)) returns true.

• The isBeliefFrom(Term) method checks if the considered SL formula node is a belief
of the given agent. For example, SLPatternManip.fromformula(“(B (agent-
identifier :name foo) p)”).isBeliefFrom(SLPatternanip.fromTerm(“(agent-
identifier :name foo)”)) returns true.

• for the Term node:
• The getSimplifiedTerm() method has the same effect on the terms as the preceding

one on formulae.

• for the Content node:
• The getContentElement(int) method returns the element of the content at the given

index;
• The setContentElement(int, Node) method sets the element at the given index with

the given node;

Figure 3: Graphical representation of a formula

Intention

Term

Predicate

Belief

Term

Symbol Term

John

Bob

temperature 10

Jade Semantics Add-on Programmer's guide

Page 14 of 62

• The addContentElement(Node) method adds a new element in the content;
• The setContentElements(int) method creates a content element storage of the given

size, or, if it already exists, clears it;
• The contentElementNumber() method the number of element in the content.

• for all nodes:
• The toString() method unparses any node in a String representation format.

Finally, meta-operators are included into the SL grammar to improve the pattern expressiveness. To
date, only one meta-operator is defined:

• This operator (identified with the characters “::?”) handle optional sub-nodes in an SL
element.

Several additional meta-operators are planned for future versions.

3.2 Normal form of SL expression
The normal form of SL formulae is used in order to provide unambiguous semantic representation
of messages and unambiguous applications of SIPs. We define a set of rules to compute a normal
form (it is theoretically not possible to compute a real normal form that is a unique formula
representing all the logically equivalent formulae).This set seems to be sufficient for most of cases.
However, it can be completed in order to get more accurate resulting normal forms. For example,
the set contains the rules:

• (not true) is simplified as false;
• (not (not phi)) is simplified as phi;
• (not (forall ?x phi)) is simplified as (exists ?x (not phi));
• (B ja phi) is simplified as phi, if phi is a mental attitude of ja;
• (B ja (and phi psi)) is simplified as (and (B ja phi) (B ja psi));
• etc.

Also, we arbitrary decided to organise parameters in an alphabetic order in order to makes the
pattern matching (see next paragraph) process easily. For example, the normal form of the term:

(action (agent-identifier :name ja) (INFORM :sender (agent-identifier :name ja)
:receiver (set (agent-identifier :name ja1)):content "((temperature 10))"))

is:

(action (agent-identifier :name ja) (INFORM :content "((temperature 10))" :receiver
(set (agent-identifier :name ja1)) :sender (agent-identifier :name ja))

The simplification process is accessible by the use of the getSimpliedXXX methods associated to
formulae, terms and contents.

3.3 Pattern matching

3.3.1 Generality
The semantics framework provides useful tools to easily handle SL elements (formulas, terms,

Jade Semantics Add-on Programmer's guide

Page 15 of 62

contents and more generally any kind of node of the SL grammar).
The SLPatternManip class makes it possible to parse/unparse various SL formulas and terms (in
addition to contents) from/to Java Strings.

• The fromFormula(String) method returns the formula node corresponding to the given
expression (returns null if the expression is not a formula according to the SL grammar);

• The fromTerm(String) method returns the term node corresponding to the given
expression (returns null if the expression is not a term according to the SL grammar);

• The fromContent(String) method returns the content node corresponding to the given
expression (returns null if the expression is not a content according to the SL grammar);

For example:

Formula f = SLPatternmanip.fromFormula(“(not (temperature 10))”);
Term term = SLPatternManip.fromTerm(“(agent-identifier :name foo)”);
Content content = SLPatternManip.fromContent(“((temperature 10))”);

More interestingly, it additionally provides a powerful mechanism of pattern handling for creating,
recognizing, and analysing any SL elements. This mechanism relies on the introduction of “meta-
variables” into the SL grammar (identified with a double “?” character), which can be matched with
any regular SL element (depending of the context). When matching two SL expressions, the
instantiated values of these special elements can be easily retrieved (the results are stored in an
instance of MatchResult class1).

• The match(Node, Node) method checks if the two expressions match. If true, all meta
variables that has been unified can be accessed using one of the getFormula(String),
getTerm(String), getVariable(String), getSymbol(String), or
getContentExpression(String) methods of the matching result (MatchResult class).
This method is equivalent to SLPatternManip.newMatcher().match(expression1,
expression2);

Of course, several variables may occur within the SL pattern. On the contrary, if the same variable
occurs several times within a SL pattern, each occurrence should correspond to an identical part of
the unified SL expression.
For example:

• Creating a pattern

Formula pattern = SLPatternManip.fromFormula(“(B ??agent ??phi)”);

• Instantiating a pattern

Term agent = SLPatternManip.fromTerm(“(agent-identifier :name foo)”);
Formula phi = SLPatternManip.fromFormula(“(temperature 10)”);
Formula formula = SLPatternManip.instantiate(pattern,

“agent”, agent,
“phi”, phi);

System.out.println(formula);

1 A MatchResult is a list of metavariables linked to their values.

Jade Semantics Add-on Programmer's guide

Page 16 of 62

echoes: (B (agent-identifier :name foo) (temperature 10))

• Matching patterns:

Formula myPattern = (B ??agent (wearing ??agent coat));
Formula myFormula1 = (B (agent-identifier :name foo)

(wearing (agent-identifier :name foo) coat);
Formula myFormula2 = (B (agent-identifier :name foo)

(wearing (agent-identifier :name foo) cap);
Formula myFormula3 = (B (agent-identifier :name foo)

(wearing (agent-identifier :name foo2) coat);
MatchResult result = SLPatternManip.match(myPattern, myFormula1);
if (result != null)

System.out.println(“agent = “ + result.getTerm(“agent”));

echoes: agent = (agent-identifier :name foo)

result = SLPatternManip.match(myPattern, myFormula2);
if (result != null)

System.out.println(“agent = “ + result.getTerm(“agent”));

echoes nothing because myPattern and myFormula2 do not match and so the result of
the method match is null.

result = SLPatternManip.match(myPattern, myFormula3);
if (result != null)

System.out.println(“agent = “ + result.getTerm(“agent”));

echoes nothing because in myFormula3 the two agents are different whereas in the
pattern myPattern the same agent is expected.

The instantiation mechanism consists in giving a value to each metavariable. It can be done from
two different ways. Firstly, the simple way, by using one of the instantiate methods.

• The instantiate(Node) method returns a tree representing the instantiated pattern,
meaning all meta-variables have been replaced by their value;

• The instantiate(Node, String, Node), instantiate(Node, String, Node,String,
Node), instantiate(Node, String, Node, String, Node, String, Node), and
instantiate(Node, String, Node, String, Node, String, Node, String, Node)
methods return the instantiated pattern (the first parameter) with each metavariable denoted
by a String replaced by the corresponding Node value (these methods call the method set
described below).

Secondly, by setting step by step the metavariables and then by calling the
substitueMetaReferences method which substitutes each metavariable by its value:

Warning: In this case, take care to clone the pattern before beginning the instantiation.

Formula pattern = SLPatternManip.fromFormula(“(B ??agent ??phi)”);
Formula phi = SLPatternManip.fromFormula(“(temperature 10)”);

Jade Semantics Add-on Programmer's guide

Page 17 of 62

Formula result = (Formula)pattern.getClone();
SLPatternManip.set(result,

"agent", getSemanticCapabilities().getAgentName());
SLPatternManip.set(result, "phi", phi);
SLPatternManip.substituteMetaReferences(result);

With :
• the set(Node, String, Node) method sets in the result pattern the metavariable designed

by the String with the Node value given as third parameter;
• the substituteMetaReferences(Node) method substitutes in the given pattern all the

metavariables with their corresponding values.

AT least, it is interesting to call the getSimplifiedFormula() method after an instantiation to be
sure that the produced formula is in the normal form. Example, the following code :

Formula pattern = SLPatternManip.fromFormula("(not ??phi)");
Formula f1 = SLPatternManip.fromFormula("(not p)");
Formula f2 = (Formula)SLPatternManip.instantiate(pat, "phi", f1);
if (SLPatternManip.match(f2, SLPatternManip.fromFormula("p")) != null) {
 System.out.println("Success !");
} else {
 System.out.println("Fail !");
}

echoes: Fail!

Otherwise, with the getSimplifiedMethod():

Formula f2 = ((Formula)SLPatternManip.instantiate(
 pat, "phi", f1)).getSimplifiedFormula();

it echoes: Success !

3.3.2 AndNode & OrNode
The pattern matching is order independent for the And Formula and the Or formula. For example,

Formula myPattern = (or (s 1) (and (and (p 1) (q 2) (and (r 1) (t 2))));
Formula myFormula1 = (or (and (t 2) (and (and (q 2) (p 1)) (r 1)) (s 1));
MatchResult result = SLPatternManip.match(myPattern, myFormula1);
if (result != null) System.out.println(“Success !”));

echoes: Success !

3.3.3 EqualsNode
The pattern matching take account the commutativity of the equals operator So, the following code:

Formula f1 = (= (p 1) (q 2));

Jade Semantics Add-on Programmer's guide

Page 18 of 62

Formula f2 = (= (q 2) (p 1));
MatchResult result = SLPatternManip.match(f1, f2);
if (result != null) System.out.println(“Success !”));

echoes: Success !

3.3.4 Optional parameters
Finally, it is possible to precise optional parameters in the pattern using the meta-operator defined in
the previous section. For example, the following pattern:

Term pattern = SLPatternManip.fromTerm("(agent-identifier " +
"(::? :addresses ??addresses) " +
":name ??name " +
"(::? :resolvers ??resolvers))");

defines a term with two optional parameters: addresses and resolvers. This kind of pattern could
match, for example, these terms:

Term term1 = SLPatternManip.fromTerm(“(agent-identifier :name foo)”);
Term term2 = SLPatternManip.fromTerm(

“(agent-identifier :addresses add :name foo)”);

3.4 Dynamic building of SL expressions
It is possible to handle directly the abstract tree representing a SL expression by adding new nodes
or removing existing ones. The different methods which make it possible to handle the nodes of the
tree are shown is the Node hierarchy shown in the Appendix. For example, for the
ModalLogicFormula node (this kind of formula is in the form of “(ModalOp agent formula)”),
there are four methods which are getters and setters:

• The as_agent() method returns the agent of the modal logic formula;
• The as_agent(Term) method sets the agent of the modal logic formula;
• The as_formula() method returns the formula of the modal logic formula;
• The as_formula(Formula) method sets the formula of the modal logic formula.

Then, it is easy to create a modal logic formula like this:

ModalLogicFormula formula = new BelieveNode();
formula.as_agent(SLPatternManip.fromTerm(“(agent-identifier :name foo)”));
formula.as_formula(SLPatternManip.fromFormula(“(temperature 10)”));
System.out.println(formula)

echoes: (B (agent-identifier :name foo) (temperature 10))

ModalLogicFormula
as_agent
as_formula

Jade Semantics Add-on Programmer's guide

Page 19 of 62

This approach can be interesting in term of performance. The “manual” construction of the tree in
particular avoids parsing the strings representing SL expressions.

4 Semantic Representation
Semantic Representations(SRs) are the elements handled by the mechanism of interpretation (see
Figure 1: Semantics framework components). A Semantic Representation is a data structure defined
by four attributes:

• the ACL message which made it possible to build the SR. If the value of this attribute is
null, that means that the SR results from an internal event to the agent;

• a SL Formula that represents the sense of the received message or internal event;

• the index of the first semantic interpretation principle it is possible to apply on this SR. By
default, the value of the initial index is 0, meaning that all the SIPs will be tested on it;

• the data to feed back. It is mainly used in the intention transfer SIP. This SIP expresses a
necessary cooperation principle of a JSA (receiving an ACL message) towards the intentions
that the sender intends to communicate. This step is typically used to interpret incoming
Request or Inform messages, the content of which being an intention of the sender (the goal
to reach). When a JSA adopts feed back data attribute is set so that the JSA automatically
sends a message indicating that it intends to achieve the goal. This attribute is null for
internal events. The FeedBackData class is an inner class of the SemanticRepresentation
class. It is a data structure defined by two attributes: the receiver of the feed back and the
goal to reach.

SRs are created by different ways:

• each message received by a JSA is translated into a SR, which internally represents its
meaning;

• SIPs can produce SRs representing new meanings (that may be seen as inferred by the
interpretation process), which conform to the FIPA-ACL semantics;

• behaviours can produce SRs to be interpreted as internal event of the agent.

In the last case, the method interpret is used. This method is provided by the
SemanticInterpretationBehaviour class, which is the mean to interpret correctly the given SR.
This SR is added to the internal SR list of the behaviour and analyse using the SIPs as an external
message. The SemanticInterpretationBehaviour provides three methods of this kind:

• the interpret(SR) method creates an event (a SemanticRepresentation) in the internal
event list;

• the interpret(Formula) method creates an event (a SemanticRepresentation) in the
internal event list from the given formula;

• the interpret(String) method creates an event (a SemanticRepresentation) in the
internal event list from the given String, representing a formula.

This method restarts the SemanticInterpreterBehaviour if it was previously blocked.

In fact, this method is the way to use when the programmer wants to add formulae in the
interpretation mechanism or to add beliefs in the belief base. So, s/he can be sure that all
deductions are done. For example, the following code extracted from an agent ja (in its

Jade Semantics Add-on Programmer's guide

Page 20 of 62

SemanticCapabilities instance), adds the formula (wearing ja coat) in the base.

getSemanticInterpreterBehaviour().interpret(((Formula)SLPatternManip
.instantiate(SLPatternManip.fromFormula("(B ja (wearing ja coat))")));

5 Belief base
This section describes the usage of the Belief Base component supported by the framework. The
base stores facts believed by the agent according to the specific application domain.

Without any programming effort, this component can only store and retrieve “raw” facts without
actually understanding (or interpreting) their meaning. For instance, if an empty JSA is informed
that (temperature 10) is true, then he will correctly answers a Query-Ref message about (any ?T
(temperature ?T)) (meaning “give me a value of the temperature predicate”). However, he will
not be able to answer a Query-If message about (temperature_gt 15) (meaning “is the value of
the temperature predicate greater than 15?”), because he cannot guess the semantic relationships
between the temperature and the temperature_gt predicates.

This section describes the different operations towards the belief base, which are needed by the
interpretation process. The belief base should have two characteristics:

• storing the facts believed by the agent;

• providing a mechanism allowing observing variations in the contents of the base.

5.1 Principles
The interface KBase defines the methods a JSA belief base should have to manage this beliefs:

• The assertFormula(Formula) method asserts a formula in the belief base. It is up to the
belief base to manage possible inconsistencies. In any case, each asserted fact should hold in
the belief base just after the corresponding asserting operation. For example, assuming that
(not p) is in the belief base, p will also be in the base after an assertion of p. Depending on
the implementation of the belief base, (not p) may be removed in order to maintain a
consistent state of the base;

• The queryRef(IdentifyingExpression) method returns a list of objects that satisfy a
property belonging to the belief base (“object queries”). In more technical terms, the “object
queries” enable to find out an object (or a set of objects) o such as (= (Ref ?X (q ?X)) o)
belongs to the belief base, given a query formula q and an SL referential operator Ref (iota,
any or all). The three referential operator definitions, which can be found in the FIPA SL
Content language specification, are:

• iota, meaning “look for the unique object o satisfying p”. If exactly one object o can be
found such as (p o) is true, then the method returns a list including only this object.
Otherwise (if there are several or no such objects) the method returns null;

• any, meaning “look for any object o satisfying p”. If one object o can be found such as
(B jsa (p o)) is true, then the method returns a list including only this object.
Otherwise (if there is no such object) the method returns null;

Jade Semantics Add-on Programmer's guide

Page 21 of 62

• all, meaning “look for all objects o satisfying p”. The method returns a list including all
the objects o that can be found such as (p o) is true. If no such object can be found, it
returns an empty list, but never returns null;

We introduce a new referential operator:

• some, meaning “look for some objects o satisfying p”. The method returns a list
including all the objects o that can be found such as (B jsa (p o)) is true. If no such
object can be found, it returns an empty list, but never returns null.

Correct use of these operators makes it possible to handle precisely the beliefs of the agent.
A predicate p is considered as closed when an agent knows the value that makes the
predicate true, and for all the others value ?y, (not (p ?y)) is true.

Let's take an example:

If a JSA is informed that (= (iota ?x (temperature ?x)) 10) is true, then its answer to
a Query-Ref message about (iota ?T (temperature ?T)) (meaning “give me the only
value of the temperature predicate”) is 10. The answer to a Query-IF message about (=
(iota ?x (p ?x)) 10) is true, because the agent knows the only value for the
temperature predicate.

However, if a JSA is informed that (temperature 10) (equivalent to (= (any ?x
(temperature ?x)) 10)) is true, then he its answer to a Query-Ref message about
(iota ?T (temperature ?T)) (meaning “give me the only value of the temperature
predicate”) is “i do not know”. It may exists other values of temperature. On the other hand,
its answer to a Query-Ref message about (iota ?T (B jsa (temperature ?T)))
(meaning “give me the only value you believe of the temperature predicate”) is 10, because
the agent knows only one value. And, the answer to a Query-IF message about (= (iota ?x
(p ?x)) 10) is null because it could exists other values and the agent do not know if it is
the only value.

When a predicate is considered as closed, it stays closed even if other value are added. For
example, if a JSA is informed that (= (iota ?x (temperature ?x)) 10) is true (the
predicate is considered as closed), and later this agent is informed that (temperature 11)
is true, its answer to a Query-Ref message about (all ?T (temperature ?T)) (meaning
“give me the all the values of the temperature predicate”) is {10, 11}, because the predicate
is always considered as closed. In the temperature demo, the temperature predicate is closed
but if there is only one value in the base, it is due to the filters of the base.

It is possible to inform an agent that it is omniscient about a predicate (to inform the agent a
predicate is closed) at the set up of the belief base (i.e. in the setupKbase() method). For
this purpose, the addClosedPredicate(Formula) is provided in the given implementation
of the belief base (the FilterKBaseImpl class).

• The query(Formula) method returns a list of solutions to the query on a pattern. If the
pattern does not contain any metavariables, an empty list is returned by the method, meaning
that the fact belongs to the belief base, and null means that the fact does not belong to the
belief base. If the pattern contains metavariables, their values are stored in the returned list if
the pattern matches a formula (meaning true) in the base (to date only one solution is
returned), and null if the pattern does not match any formula (meaning false);

• The removeFormula(Finder) method removes from the belief base all formulae recognized

Jade Semantics Add-on Programmer's guide

Page 22 of 62

by the finder. This method is deprecated, so prefer the following method:

• The retractFormula(Formula) method retracts all the formulae which match the given
formula (which could contains metavariables).

The KBase interface provides methods to observe the belief base:

• The addObserver(Observer) method adds an observer to the belief base at the end of the
list of observers;

• The removeObserver(Finder) method removes from the belief base all the observers that
are identified by the finder.

In a transverse way, the programmer has to:

• identify which information to deal with;

• how this information should be manage.

This will have consequences on the implementation of the belief base.

In our examples, we deal with 3 kinds of information:

• (temperature x) predicate is used by all agents. It simply means the temperature value is x;
• (temperature_gt x) predicate is also used by all agents. It means the temperature value is

greater than x;
• (wearing agent clothing) is only used by the son agent and the mother (or daughter) agent

(it has no meaning for other agents). It means the agent is wearing a specified clothing.

An important task consists in properly designing this information:
• For example, the temperature should be a single value; this should be considered when

implementing this predicate
• Another example concerns the temperature_gt predicate. This predicate depends on the

temperature predicate. Obviously, (temperature_gt x) should return true for all values less
than the current temperature value.

Warning:
Remember that it is better to use one of the interpret() methods of the class
SemanticInterpretationBehaviour to add beliefs in the belief base than to use directly the
assertFormula method (see section 4). By using the interpret method, you are sure that all possible
deductions and simplifications are done.

5.2 The Filter belief base
The Filter belief base (FilterKBase interface) which is provided within the semantics framework is
a very simple base.

The belief base is divided into two lists (jade.leap.ArrayList) that contain two kinds of beliefs:

• the beliefs on the facts related to the considered application;

• the beliefs on the realized intentions.

This base provides a simple filter based mechanism to manage the beliefs (see next section) that can

Jade Semantics Add-on Programmer's guide

Page 23 of 62

be used to add consistency rules or inference rules. Filters are used to manage the accesses to the
belief base. It is a way for the developer to trigger some specific code. Two kinds of filters can be
used:

• Assert filters are automatically called when asserting a fact;
• Query filters are automatically called when querying facts or identifying expressions.

The FilterKBase interface provides methods to handle filters such as:

• The addKBAssertFilter(KBAssertFilter) method adds an assert filter to the belief base;

• The addKBAssertFilter(KBAssertFilter, int) method adds an assert filter at the
specified index;

• The removeKBAssertFilter(Finder) method removes the assert filters that are identified
by the specified finder;

• The addKBQueryFilter(KBQueryFilter) method adds a query filter to the belief base;

• The addKBQueryFilter(KBQueryFilter, int) method adds a query filter at the specified
index;

• The removeKBQueryFilter(Finder) method removes the query filters that are identified
by the specified finder;

• The addFiltersDefinition(FiltersDefinition) method adds a list of filters to the
belief base (useful for defining specific predicate management).

All these methods are used same manner. For example:

((FilterKBase)myKBase).addKBAssertFilter(
new KBAssertFilter() {...}

}

For each kind of filters (assert filters and query filters), a specific ordered list
(jade.leap.ArrayList) is used to store them in the belief base. Two constants are defined in the
FilterKBase interface to help the addition of the filters in the base:

• Front is used to add a filter at the beginning of a list;
• End is used to add a filter at the end of the list

5.2.1 Filters
The KBFilter class defines the filters. It gives the method to have a link between a filter and the
belief base it belongs to by giving the getter (the getMyKBase method) and setter (the setMyKBase
method).

The next paragraphs describe the standard filters provided by the framework.

5.2.1.1 Assert filters
This kind of filter is used to maintain the consistency of the belief base and to manage the storage of
the beliefs. The Assert filters of the Temperature Demo illustrate the first point as they maintain the

Jade Semantics Add-on Programmer's guide

Page 24 of 62

consistency (at each time there is only one value of the temperature in the belief base) of the
predicates temperature and temperature_gt (at each time there is only one value of the temperature
in the belief base). The following filter illustrates the second point:

// Filter to handle assert of image content.
((FilterKBase)myKBase).addKBAssertFilter(new KBAssertFilterAdapter("(B ??agent
(image-content ??id ??content))") {
 public Formula doApply(Formula formula) {
 String id = ((Constant)applyResult.term("id")).stringValue();
 String location = albumUrl.replaceAll("file:", "")+id+".jpg";
 byte[] bytes = ((ByteConstantNode)applyResult.term("content")).lx_value();
 JPEGUtilities.save(JPEGUtilities.load(new ByteArrayInputStream(bytes)),
location);
 return new TrueNode();
 }
});

In this filter, the filter matches a formula where the metavariable ??content is linked to an image
content. Instead of storing the image in the belief base of the agent, which would take much place,
the image is stored in a file. The filter returns a TrueNode formula to prevent that the raw
mechanisms assert the image in the base. Of course a query filter is necessary, that loads the image
from the file, to get back the image when needed.

Each assert filter could be trigger before and/or after the assertion of a formula in the belief base
(the assert filters are defined by the KBAssertFilter class):

• The filters are tested at the beginning of the assertion algorithm, in the order where they
were added, by calling the apply(Formula) method. This method is always called when a
formula is asserted and returns a formula, which is the new formula to assert.

By this way, modifications could be done on the incoming formula if the programmer wants
to modify the formula to assert. The programmer can thus bypass the classical assertion
mechanism by returning a TrueNode formula (a TrueNode formula is never asserted in the
belief base).

• Then the raw mechanism of the assertion try to assert the formula;

Filter i

Filter i+1

formula

formula actually
asserted

Filter n

...

Jade Semantics Add-on Programmer's guide

Page 25 of 62

• Finally, the afterAssert(Formula) method is called after the assertion for each assert filter
in the order defined by the list. The method is called only if a boolean (the attribute
mustApplyAfter of KBAssertFilter class) is set to true. However, the
afterAssert(Formula) method is deprecated, it is better to use an observer (see section
5.2.2).

Here, the default case for these two methods is shown:

public Formula apply(Formula formula) {
// The afterAssert method will be called after the assertion
mustApplyAfter = true;
// No modification on the incoming formula
return formula;

}

// The method does nothing.
public void afterAssert(Formula formula) {
}

We present now the standard assert filters provided within the framework.

KBAssertFilterAdapter
This class is an easy means to define an assert filter. The string given in the constructor represents
the formula on which the filter could be applied. The programmer must override the
doApply(Formula) method which is called by the apply method if the filter is applicable. S/he can
override the afterAssert method too, depending of her/his needs.

AndFilter
This filter asserts in the belief base the two parts of an And formula (by splitting the AndFormula
into two formulae). It is applicable on the formula of the form (and φ ψ). In this case, the method
returns a TrueNode.

EventMemoryFilter
This filter aims at storing actions or events the agent has done. It is applicable on the asserted
formula of the form (B ja (done act φ)). If the action expression act is a sequence of actions, all the
unitary actions, which make the sequence are stored.
As, the filter use the event memory list to store the actions, the filter stores the formulae itself. The
apply method returns a TrueNode formula and the afterAssert method is never called.

ForallFilter
This filter is used to manage the formulae of the form (forall ??var (B ??agt ??phi)). If the
incoming formula matches this pattern, a formula of the form (= (all ??var (not ??phi)) (set)) is
asserted. In this case, the method returns a TrueNode.

IREFilter
This filter is used to manage correctly the expressions of the form (= (all ??X ??formula) ??set)) or
(= (iota ??X ??formula) ??value)). Without this filter, it is the whole expression which would be
asserted in the belief base. With this filter, the asserted part is:

• for the all expression : each element which appears in the set;

Jade Semantics Add-on Programmer's guide

Page 26 of 62

• for the iota expression : the single element.
The filter is applicable on the formulae of the form (B ??agent (= (all ??X ??formula) ??set)) or
(B ??agent (= (iota ??X ??formula) ??set)). The afterAssert method does nothing.

ObserverFilter
After the assertion of a formula, this filter checks all the observed formulae. If the value of the
observation becomes true, the associated observer is notified. The apply method does nothing in
this filter.

Example of an applicative filter
In our example, we use the KBAssertFilterAdapter to remove all previous known fact about the
temperature each time a new temperature value is asserted. The method returns the same formula in
order to the raw mechanism of the assertion process asserts the formula. However, if the formula is
already in the base, the method returns a TrueNode formula to avoid that the raw mechanism of the
assertion asserts it again.

((FilterKBase)myKBase).addKBAssertFilter(
 new KBAssertFilterAdapter("(B ??agent (temperature ??x))") {
 public Formula doApply(Formula formula) {
 if ((myKBase.query(formula) != null)) {

return new TrueNode();
 } else {

kbase.retractFormula(SLPatternManip.fromFormula("(temperature ??x)"));
kbase.retractFormula(SLPatternManip.fromFormula("(not (temperature ??

x))"));
kbase.retractFormula(SLPatternManip.fromFormula("(temperature_gt ??x)"));
kbase.retractFormula(SLPatternManip.fromFormula("(not (temperature_gt ??

x))"));
return formula;

}}});

The filter coding is very simple. It takes as an argument the pattern representing the facts to be
considered, that is (B ??agent (temperature ??x)). If the belief base already holds the asserted
fact, the filter returns true and no new fact will be asserted. At the contrary, the filter removes all
facts about the temperature; these facts states :

• (temperature ??x)
• Or (not (temperature ??x))
• Or (temperature_gt ??x)
• Or (not (temperature_gt ??x))

5.2.1.2 Query filters
The KBQueryFilter abstract class provides a method to use a query filter:

• The apply(Formula, Term) method has two parameters:

• the queried formula;

• a term that represents the agent trying to apply the filter;

and returns a QueryResult object which have two attributes:

• a boolean which is true if the filter is applicable on the formula, false if not;

Jade Semantics Add-on Programmer's guide

Page 27 of 62

• a list of MatchResults which contains all the MatchResult, resulting of the
performance of the filter on the given formula. Each MatchResult contains a list
of value that makes true the formula given in parameter. If the list is null, that
means that the answer to the query is false.

All the query filters are called at the beginning of the query algorithm (by calling the apply method)
in the order defined by the query filter list. If a filter is applicable (i.e. the incoming formula
matches a specific pattern defined in the filter), the algorithm stops and returns the result of this
filter. if no filter is applicable, the raw mechanism of the query is applied and the result returned.

We present now the standard query filters provided within the framework.

KBQueryFilterAdapter
This class is an easy means to define a query filter. The string given in the constructor represents the
formula on which the filter could be applied. The programmer must override the apply(Formula)
method; depending of her/his needs.

The following code shows the apply method of the QueryFilterAdapter.

public QueryResult apply(Formula formula, Term agent) {
 // the resut. By default, the boolean is set to false and the list
 // Matchresult is set to null
 QueryResult queryResult = new QueryResult();
 // test if the filter is applicable
 MatchResult match = SLPatternManip.match(formula, pattern);
 if (match != null) {

Filter i

Filter i+1

formula

applicable ?yes

no
The method returns the
result of Filter i

...

Filter n

applicable ?yes

no

The method returns the
result of Filter n

raw query

Jade Semantics Add-on Programmer's guide

Page 28 of 62

 // the filter is applicable, the boolean of the result is set to true
 queryResult.setFilterApplied(true);
 ListOfMatchResults list = new ListOfMatchResults();
 // the method doApply returns the list of MatchResult
 list.add(doApply(formula, match));
 queryResult.setResult(list);
 }
 return queryResult;
}

In the case of the QueryFilterAdapter, the programmer has just to redefine the doApply method
which returns the list of MatchResult.

AndFilter
This filter is applicable when the queried formula is a conjunction (the filter is applicable on the
formulae of the form (and ??phi ??psi). The result is the join of each MatchResult resulting of the
query on ??phi and all MatchResults resulting of the query on ??psi.

BeliefTransferFilter
This filter is used to check if the semantic agent is cooperative towards another agent regarding a
specific belief or not. This filter uses the acceptBeliefTransfer method (see paragraph 7) of the
StandardCustomization class to check if the filter returns true or false. The filter is applicable on
formulae of the form (or (not (I ??agent1 (B ??agent2 ??belief))) (B ??agent2 ??belief)), meaning
agent1 has the intention agent2 believes belief implies agent2 believes belief. For example, this
filter may be applied when the Jade agent receives a RequestWhenever, a Refuse, Subscribe, a
Propose, a Confirm, a Failure, a Disconfirm, or an Inform message with the appropriate
content.

CFPFilter
This filter applies whenever an agent (agent1) is calling for a proposal (consisting in performing an
action (act) under a specific condition (condition)) towards another agent (agent2). This filter is
applicable on formulae of the form (or (not (I ??agent1 (done ??act ??condition))) (I ??agent2
(done ??act ??condition))). The apply method, depending of the form of the identifying expression
given in parameter, calls the handleCFPIota method, the handleCFPAny method, the
handleCFPSome method, or the handleCFPAll method of the StandardCustomization class (see
paragraph 7).

EventMemoryfilter
This filter is applicable on formulae of the form (B ??agent (exists ??e (done ??act))). This filter
checks if the action “??act” is a sequence of actions (can be reduced to only one) already done by
the agent. If a VariableNode appears in the action expression that means an unspecified number of
actions can appear between the specified actions. For example, a1;a2;e;a3 , means that a2 must
follow a1 in the memory whereas there can be several actions between a2 and a3.

Jade Semantics Add-on Programmer's guide

Page 29 of 62

ExistsFilter
This filter is applicable on formulae of the form (B ??agt (exists ??var ??phi)) or (exists ??var
(B ??agt ??phi)). The variable ??var is changed into Metavariable in the formula ??phi and the
method query is called on the resulting formula. The result is the resulting list of MatchResults of
the last query, in which the result on the variable ??var has been removed.

ForallFilter
This filter is applicable on formulae of the form (forall ??var ??phi) and if ??phi is a mental
attitude of the agent. The variable ??var is changed into Metavariable in the formula ??phi and the
method query is called on the resulting formula (form). If the result to the query is null and if form is
a closed formula, the filter returns an empty list of MatchResult. Otherwise, it returns null.

IntentionTransferFilter
This filter is used to check if the semantic agent is cooperative towards another agent regarding a
specific goal or not. This filter uses the acceptIntentionTransfer method (see paragraph 7) of
the StandardCustomization class to check if the filter returns true or false. The filter is applicable
on formulae of the form (or (not (I ??agent1 ??goal)) (I ??agent2 ??goal)), meaning agent1 has the
intention of goal implies agent2 has the same intention. For example, this filter may be applied
when the Jade agent receives a Request, a Query-if, a Query-ref, a CallForProposal, a
Confirm, a Disconfirm, or an Inform message with the appropriate content.

IREFilter
This filter applies when the query relates to the equality between an identifying expression and a
term. The filter is applicable on formulae of the form on the patterns (B ??agent (= ??ire ??term))
and (B ??agent (not (= ??ire ??term))).

OrFilter
This filter is applicable when the queried formula is an alternative (the filter is applicable on the
formulae of the form (or ??phi ??psi)). The query method is called on phi and then on psi. The
result is the union of the two resulting list of MatchResults.

Example of an applicative filter
Here is an example of Query filter:

((FilterKBase)myKBase).addKBQueryFilter(
new KBQueryFilterAdapter("(B ??agent (temperature_gt ??x))") {
 public QueryResult apply(Formula formula, Term agent) {
 QueryResult queryResult = new QueryResult();
 try {
 SLPatternManip.set(pattern, "agent", agent);
 Formula IOTA_VALUE = SLPatternManip.fromFormula((iota ?y (B ??agent

Jade Semantics Add-on Programmer's guide

Page 30 of 62

temperature ?y))));
 Formula IOTA_VALUE_GT = SLPatternManip.fromFormula((iota ?y (B ??agent
temperature_gt ?y))));
 // Test i the filter is applicable
 MatchResult applyResult = SLPatternManip.match(pattern, formula);
 if (applyResult != null && applyResult.getTerm("x") instanceof Constant) {
 Long queriedValue = ((Constant)applyResult.getTerm("x")).intValue();
 // query the base on temperature
 ListOfTerm queryRefResult = myKBase.queryRef((IdentifyingExpression)
 SLPatternManip.instantiate(IOTA_VALUE,"agent",applyResult.getTerm("agen
t")));
 if (queryRefResult != null && queryRefResult.size() != 0) {

// The agent knows a value for the temperature predicate
 // Compares the known value and the queried value
 if (((Constant)queryRefResult.get(0)).intValue().longValue() >
queriedValue.longValue()) {
 // The queried value is greater than the known one
 queryResult.setResult(new ListOfMatchResults());
 }
 } else {
 // query the base on temperature_gt
 queryRefResult = myKBase.queryRef((IdentifyingExpression)
 SLPatternManip.instantiate(IOTA_VALUE_GT,"agent",
 applyResult.getTerm("agent")));
 if (queryRefResult != null && queryRefResult.size() != 0) {

// The agent knows a value for the temperature predicate
 // Compares the known value and the queried value
 if (((Constant)queryRefResult.get(0)).intValue().longValue() >=
queriedValue.longValue()) {
 // The queried value is greater than the known one
 queryResult.setResult(new ListOfMatchResults());
 }
 }
 }
 // The filter is applicable so the boolean value of the QueryResult is set
to true
 queryResult.setFilterApplied(true);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return queryResult;
 }
});

This filter is called when querying a fact matching the pattern (B ??agent (temperature_gt ??
x)). The filter searches for a stored fact of the form (temperature ??y); if it is found, and the y
value is greater than x, the filter returns true. Else, it searches for a stored fact of the form
(temperature_gt ??y); if it is found, and the y value is greater than x, the filter returns true. Else
the filter returns false.

5.2.1.3 FiltersDefinition class
An easy way to define filters is to use the FiltersDefinition class. This class is very useful to
gather filters that deal with the management (i.e. assertion and querying) of specific predicates. The
class extends jade.leap.ArrayList. An instance of such class is a sorted list of
FilterDefinition, which is a filter associated at its index in the belief base list of filters. The
FiltersDefinition class provides the following specific methods:

Jade Semantics Add-on Programmer's guide

Page 31 of 62

• The defineFilter(int, KBFilter) method adds a new filter in the list with a specified
index;

• The defineFilter(KBFilter) method adds a new filter at the beginning of the list;

• The get(int) method returns the FilterDefinition instance at the specified index.

The SingleNumValueDefinition class of the temperature demo is a good example of use of this
class. This class defines an unspecified predicate, which has only one numerical value as parameter.

public class SingleNumValueDefinition extends FiltersDefinition {

 //
 //Patterns used to manage the defined predicate
 //
 Formula VALUE_X_PATTERN;
 Formula NOT_VALUE_X_PATTERN;
 Formula VALUE_GT_X_PATTERN;
 Formula NOT_VALUE_GT_X_PATTERN;
 IdentifyingExpression ALL_VALUES;
 IdentifyingExpression ALL_VALUES_GT;
 IdentifyingExpression ALL_VALUES_NOT_GT;

 // If the parameter name takes the value “temperature”, we find
 // the predicates handled in our example
 public SingleNumValueDefinition(String name) {
 VALUE_X_PATTERN = SLPatternManip.fromFormula("("+name+" ??X)");
 NOT_VALUE_X_PATTERN = SLPatternManip.fromFormula("(not ("+name+" ??X))");
 VALUE_GT_X_PATTERN = SLPatternManip.fromFormula("("+name+"_gt ??X)");
 NOT_VALUE_GT_X_PATTERN = SLPatternManip.fromFormula("(not ("+name+"_gt ??
X))");
 ALL_VALUES = (IdentifyingExpression)SLPatternManip.fromTerm("(all ?y
("+name+" ?y))");
 ALL_VALUES_GT = (IdentifyingExpression)SLPatternManip.fromTerm("(all ?y
("+name+"_gt ?y))");
 ALL_VALUES_NOT_GT = (IdentifyingExpression)SLPatternManip.fromTerm("(all ?y
(not ("+name+"_gt ?y)))");

 // ASSERT FILTERS
 // --------------
 // These filters are used to let only one information about this
 //predicate in the base.
 defineFilter(new KBAssertFilterAdapter("(B ??agent " + VALUE_X_PATTERN + ")") {

...
 });
 defineFilter(new KBAssertFilterAdapter("(B ??agent "+VALUE_GT_X_PATTERN+ ")") {

...
 });
 defineFilter(new KBAssertFilterAdapter("(B ??agent " + NOT_VALUE_GT_X_PATTERN
+ ")") {
 });

 // QUERY FILTERS
 defineFilter(new KBQueryFilterAdapter("(B ??agent " + VALUE_GT_X_PATTERN +
")") {

...
 });
 defineFilter(new KBQueryFilterAdapter("(B ??agent " + NOT_VALUE_GT_X_PATTERN +
")") {

...

Jade Semantics Add-on Programmer's guide

Page 32 of 62

 });
 }
}

5.2.1.4 Adding new filters
Adding new filters is done in the setupKbase() method of the class SemanticCapabilities.

public void setupKbase() {
 super.setupKbase();
 ((FilterKBase)myKBase).addKBAssertFilter(
 new KBAssertFilterAdapter("(B ??agent ??phi)") {

public Formula doApply(Formula formula) {
}

});

First, it is important to call the super.setupKbase() method to load all the generic filters used by
the JSA. Then, the programmer can use the addKBAssertFilter, the addKBQueryFilter methods
to add his/her own applicative filters.

5.2.1.5 Removing beliefs from the base
There is two ways to remove beliefs by asserting formulae:

• The first way is to assert a formula of the form (not (B jsa ??phi)) where ??phi is the
formula to remove. In this case, the formula is simply removed from the base (if the formula
is in the base). The programmer can use the retractFormula(Formula) method which
applies this principle.

• The second way is to assert a formula of the form (not ??phi) where ??phi is the formula
to remove. As the base must remain consistent, the formula ??phi is removed and the
formula (not ??phi) is asserted.

5.2.2 Observers
The aim of observers is to observe the belief base and trigger some code if a specific formula (one
formula per observer) value changes. Observers are defined by the interface Observer, which
provides several methods:

• The notify(ListOfMatchResults) method notifies the observer that the value has
changed;

• The getObservedFormula() method returns the observed formula.

The ObserverAdapter class is the implementation of the Observer interface provided by the
framework. This class does nothing particular. At least, the EventCreationObserver class is used
to create a special observer, which triggers the interpretation of a specified formula. A boolean
given in the constructor of the class makes it possible to specify if the observer must trigger once or
at each time the formula changes.

Observers are stored in the filter belief base in a list (jade.leap.ArrayList) by means of the
Observation inner class. An Observation gathers an observer and the last observed value related

Jade Semantics Add-on Programmer's guide

Page 33 of 62

to the observed formula. When a new value is asserted, the value is compared to the stored value in
the corresponding Observation depending of the observed formula, and, if necessary, is updated.
In case of change, the notify method is called.

Adding new observers is done in the redefinition of the setupKbase method of the
SemanticCapabilities class.

public void setupKbase() {
 super.setupKbase();
...
 getMyKBase().addObserver(new EventCreationObserver(...));
...
}

Of course, the observers could be added dynamically by using the same method (for example, see
the code of semantics.interpreter.sips.Subscription class code).

The conjunction of filters and observers makes it possible to implement the Subscribe, Request-
When, and Request-Whenever act performances. For example, an agent agt1 sends a Request-When
to an agent agt2 with the content ((action agt2 (INFORM :sender agt2 :receiver (set agt1) :content
"((temperature 10))")) (temperature 10))). This message means that agent agt2 should inform agent
agt1 that temperature is 10 when temperature is 10. The Inform act should be done only once.
When agt2 receives this message, a new EventCreationObserver o is added to its belief base (by
means the RequestWhen SIP; see paragraph 9.2) to observe the formula (temperature 10). If this
formula is asserted in the agt2 belief base, the ObserverFilter is tested. If the value has changed,
the observer o is notified. As it is a Request-When act, the observer is removed from the belief base.
A new event is generated on (action agt2 (INFORM :sender agt2 :receiver (set agt1) :content
"((temperature 10))"). The effect of this will be the Inform message from agt2 towards agt1.

By using correctly the observers, it is easy to specify behaviours related to changes on the agent's
beliefs. For example, the behaviour consisting in taking off or putting on clothing in the temperature
demo is due to the use of observers.

// Adds Observers to test if the temperature is greater than a specified level
//
// level 20
getMyKBase().addObserver(new EventCreationObserver(myAgent,
 SLPatternManip.fromFormula("(B "+getAgentName()+" (temperature_gt 20))"),
 SLPatternManip.fromFormula("
 (and (I "+getAgentName()+" (not (wearing "+getAgentName()+" trousers)))" +
 "(and (I "+getAgentName()+" (not (wearing "+getAgentName()+" pullover)))" +
 "(and (I "+getAgentName()+" (not (wearing "+getAgentName()+" coat)))" +
 "(I "+getAgentName()+" (not (wearing "+getAgentName()+" cap))))))"
)));

// level 15
getMyKBase().addObserver(new EventCreationObserver(myAgent,
 SLPatternManip.fromFormula("(B "+getAgentName()+" (temperature_gt 15.0))"),
 SLPatternManip.fromFormula("
 (and (I "+getAgentName()+" (not (wearing "+getAgentName()+" pullover)))" +

Jade Semantics Add-on Programmer's guide

Page 34 of 62

 "(and (I "+getAgentName()+" (not (wearing "+getAgentName()+" coat)))" +
 "(I "+getAgentName()+" (not (wearing "+getAgentName()+" cap)))))")));

// level 10
getMyKBase().addObserver(new EventCreationObserver(myAgent,
 SLPatternManip.fromFormula("(B "+getAgentName()+" (temperature_gt 10))"),
 SLPatternManip.fromFormula("
 (and (I "+getAgentName()+" (not (wearing "+getAgentName()+" coat)))" +
 "(I "+getAgentName()+" (not (wearing "+getAgentName()+" cap))))))")));

// level 0
getMyKBase().addObserver(new EventCreationObserver(myAgent,
 SLPatternManip.fromFormula("(B "+getAgentName()+" (temperature_gt 0))"),
 SLPatternManip.fromFormula("(I "+getAgentName()+" (not (wearing "+getAgentName()+"
cap)))")));

// Adds Observers to test if the temperature is lower than a specified level
//
// level 20
getMyKBase().addObserver(new EventCreationObserver(myAgent,
 SLPatternManip.fromFormula("(B "+getAgentName()+" (not (temperature_gt 20)))"),
 SLPatternManip.fromFormula("(I "+getAgentName()+" (wearing "+getAgentName()+"
trousers))")));

// level 15
getMyKBase().addObserver(new EventCreationObserver(myAgent,
 SLPatternManip.fromFormula("(B "+getAgentName()+" (not (temperature_gt 15)))"),
 SLPatternManip.fromFormula("
 (and (I "+getAgentName()+" (wearing "+getAgentName()+" pullover))" +
 "(I "+getAgentName()+" (wearing "+getAgentName()+" trousers)))")));

// level 10
getMyKBase().addObserver(new EventCreationObserver(myAgent,
 SLPatternManip.fromFormula("(B "+getAgentName()+" (not (temperature_gt 10)))"),
 SLPatternManip.fromFormula("
 (and (I "+getAgentName()+" (wearing "+ getAgentName()+" coat))" +
 "(and (I "+getAgentName()+" (wearing "+getAgentName()+" pullover))" +
 "(I "+getAgentName()+" (wearing "+getAgentName()+" trousers))))"
)));

// level 0
getMyKBase().addObserver(new EventCreationObserver(myAgent,
 SLPatternManip.fromFormula("(B "+getAgentName()+" (not (temperature_gt 0)))"),
 SLPatternManip.fromFormula("
 (and (I "+getAgentName()+" (wearing "+getAgentName()+" cap))" +
 "(and (I "+getAgentName()+" (wearing "+ getAgentName()+" coat))" +
 "(and (I "+getAgentName()+" (wearing "+getAgentName()+" pullover))" +
 "(I "+getAgentName()+" (wearing "+getAgentName()+" trousers)))))")));

This code defines four temperature levels: 0, 10, 15, and 20. If the agent believes that it is above or
below (one observer for each case) the one of these levels, it decides to put on or take off clothing.
In details:

// Adds an Observer to the belief base
getMyKBase().addObserver(
 // It is an EventCreationObsever to trigger event

Jade Semantics Add-on Programmer's guide

Page 35 of 62

 new EventCreationObserver(
 //The agent that has this observer on its belief base
 myAgent,
 // The observed formula
 SLPatternManip.fromFormula("(B "+getAgentName()+ "(not (temperature_gt
20)))"),
 // The event to be generated
 SLPatternManip.fromFormula("(I "+getAgentName()+"(wearing " + getAgentName() +
" trousers))")));

This observer deals with the temperature lower than 20 degrees. The first formula means “the agent
believes that the temperature is lower than 20 degrees”. The second one means “the agent has the
intention to be dressed with his trousers”. The content of the intention corresponds to the rational
effect of the PUT-ON ontological action (see paragraph 6.4) so that when the corresponding semantic
event is triggered, the agent will perform the PUT-ON action in accordance with the rationality
principle (see paragraph 9.2).

We focus now on the code of the notify method of the EventCreationObserver. The code is the
following:

public void notify(ListOfMatchResults list) {
 try {
 if (list != null) {
 if (list.size() >= 1) {
 for (int i =0; i < ((MatchResult)list.get(0)).size(); i++) {
 // Instantiate the event to generate with the values of the match results
 SLPatternManip.instantiate(subscribedEvent,
 ((MetaTermReferenceNode)((MatchResult)list.get(0)).get(i)).lx_name(),
 ((MetaTermReferenceNode)((MatchResult)list.get(0)).get(i)).sm_value());
 }
 }
 //The agent interpretes the subscribe event
 myAgent.getSemanticCapabilities().getSemanticInterpreterBehaviour().interpret(
new SemanticRepresentation(subscribedEvent));
 // The case of Request When: the observer is deleted
 if (isOneShot)
myAgent.getSemanticCapabilities().getMyKBase().removeObserver(new Finder() {
 public boolean identify(Object object) {
 return EventCreationObserver.this == object;
 }
 });
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
}

This method uses the interpret method provided by the SemanticInterpretationBehaviour
class, which is the mean to interpret correctly the given SR. This SR is added to the internal SR list
of the behaviour and analysed using the SIPs as an external message.

The goal of an observer is to query the base after each assertion to test if the value of the observed

Jade Semantics Add-on Programmer's guide

Page 36 of 62

formula has changed. Consequently lots of queries are done after each assertion. To optimize the
performance, the programmer has to determine for each observer which patterns could have an
effect on the value of the observed formula. By this way, when a new assertion is done, only the
concerned observers are triggered. To reach this goal, the programmer has to override for each filter
the getObserverTriggerPatterns(Formula, Set) method. The formula given in parameter is
the one observed by the observer and the set given in parameter contains all the patterns which
triggers the observer.

Let's take an example:

We consider the query filter which manages the temperature_gt predicate. Of course, the observer
which observes the (temperature_gt ??X) pattern should be triggered at least if a formula
matches this pattern. But, when you examine the code of the filter, you notice that the value of
temperature_gt depends on the (temperature ??X) or the (not (temperature_gt ??X))
patterns too. So, the observer on (temperature_gt ??X) should be triggers if there is
modification on (temperature ??X) or the (not (temperature_gt ??X)) patterns.

public void getObserverTriggerPatterns(Formula formula, Set set) {
 try {
 MatchResult applyResult = SLPatternManip.match(pattern, formula);
 if (applyResult != null && applyResult.getTerm("X") instanceof Constant) {
 set.add(VALUE_X_PATTERN);
 set.add(VALUE_GT_X_PATTERN);
 set.add(NOT_VALUE_GT_X_PATTERN);
 }
 } catch (SLPatternManip.WrongTypeException wte) {
 wte.printStackTrace();
 }
}

6 Semantic Actions
A Semantic Action is defined by:

• a term that represents the author of the action;
• its feasibility precondition (represented by an SL formula), which represents a condition that

must hold for an agent to be able to perform the action;
• its rational effect (represented by an SL formula), which represents a state intended by the

agent performing the action;
• its persistent feasibility Precondition (represented by an SL formula), which represents the

subset of the feasibility precondition that necessarily persists just after the performance of
the action;

• its postcondition (represented by an SL formula), which represents the effect that the
performing agent considers to be true just after the performance of the action;

• a semantic behaviour, which implements its performance by the agent.

The SemanticAction interface defines the methods to manage these characteristics:
• The getAuthor() method returns a Term that represents the author of the action;
• The getFeasibilityPrecondition() method returns the feasibility precondition;
• The getRationalEffect() method returns the rational effect of the action;

Jade Semantics Add-on Programmer's guide

Page 37 of 62

• The getPersistentFeasibilityPrecondition() method returns the
persitentFeasibilityPrecondition;

• The getPostCondition() method returns the postcondition of the action;
• The getBehaviour() method returns the behaviour of the action;
• The newAction(ActionExpression) method creates a new instanced instance of the action

based on the specified action expression;
• The newAction(Formula, ACLMessage) method creates a new instanced instance of the

action based on the specified rational effect;
• The toActionExpression() method returns the action expression representation of this

action.

The top of the hierarchy of semantic actions is shown in the next figure:

Three kinds of semantic actions are distinguished: the operators, the communicative actions, and the
ontological actions. The alternative operator and the sequence operator are considered as “macro-
actions”, which express some complex actions by combining semantic actions. For example, the
Inform-If act is formally defined as a finite alternative of two Inform acts. The communicative
actions gather all the FIPA Communicative Acts. Finally, the ontological actions gather the actions
related to a specific application.

6.1 Semantic action table
The semantic action table gathers all the semantic actions. The SemanticActionTable interface
provides methods to handle the table:

• The getSemanticCapabilities() method returns the semantic capabilities that hold the
action table;

• The addSemanticAction(SemanticAction) method adds a semantic action in the table;
• The removeSemanticAction(Finder) method removes the semantic action identified by

the finder;
• The getSemanticActionInstance(ActionExpression) method creates an instantiated

SemanticAction from the SemanticAction prototype within the table corresponding to an
ActionExpression;

• The getSemanticActionInstance(ACLMessage) method creates an instantiated
SemanticAction from the SemanticAction prototype within the table corresponding to an
ACL Message;

SemanticAction
<<interface>>

SemanticActionImpl

Alternative OntologicalAction Sequence CommunicativeActionImpl

CommunicativeAction
<<interface>>

Jade Semantics Add-on Programmer's guide

Page 38 of 62

• The getSemanticActionInstance(ArrayList, Formula, ACLMessage) method creates
a list of instantiated semantic actions from the SemanticAction prototypes within the table,
such that each SemanticAction has a specified rational effect;

• The loadTable() method loads the actions in the table;
• The size() method returns the size of the table.

The position of an action in the table does not have any importance. The
SemanticActionTableImpl class is the implementation of the SemanticActionTable interface
provided by the framework. It extends the jade.leap.ArrayList class.

6.2 Semantic action behaviours
The definition of each semantic action must provide a semantic behaviour implementing the
performance of this action. A semantic behaviour (see the SemanticBehaviour interface) is a
classical JADE Behaviour with the additional property that they must end up in three possible
ways:

• success, that means that the corresponding semantic action has been correctly performed;
• feasibility failure, that means that it is not possible to perform the action because its

feasibility precondition is not satisfied;
• execution failure, that means that an unexpected failure is encountered during the

performance of the action.

Of course, the hierarchy is close to the one of the actions. The behaviours attached to each semantic
action implement the SemanticBehaviour interface. For each action is associated its behaviour:

• The AlternativeBehaviour for the Alternative operator;
• The SequenceBehaviour for the Sequence operator;
• The CommunicativeActionBehaviour for the CommunicativeActionImpl class;
• The OntoActionBehaviour for the OntologicalAction class.

AlternativeBehaviour
This behaviour extends jade.core.behaviours.SequentialBehaviour. It executes its sub-
behaviours sequentially and terminates when:

SemanticBehaviour
<<interface>>

AlternativeBehaviour IntentionalBehaviour SequenceBehaviourSemanticBehaviourBase

OntoActionBehaviourCommunicativeActionBehaviour

InformRefBehaviour PrimitiveBehaviour

Jade Semantics Add-on Programmer's guide

Page 39 of 62

• a behaviour of the sequence returns success. The internal state of the
AlternativeBehaviour is set to success;

• a behaviour of the sequence returns execution failure. The internal state of the
AlternativeBehaviour is set to execution failure;

• all behaviours of the sequence return feasibility failure. The internal state of the
AlternativeBehaviour is set to feasibility failure.

SequenceBehaviour
This behaviour extends jade.core.behaviours.SequentialBehaviour. It executes its sub-
behaviours sequentially and terminates when:

• a behaviour of the sequence returns feasibility failure. The internal state of the
SequenceBehaviour is set to success;

• a behaviour of the sequence returns execution failure. The internal state of the
SequenceBehaviour is set to execution failure;

• all behaviours of the sequence return success. The internal state of the SequenceBehaviour
is set to success.

SemanticBehaviourBase
This abstract class models a basic implementation of the SemanticBehaviour interface. It extends
jade.core.behaviours.Behaviour.

CommunicativeActionBehaviour
This abstract class models communicative behaviours. The action method follows these steps:

• if the current agent is the one making the action;
• tests the compute method. This method should be overridden;
• if the method returns true;

• in this case, sends the ACL message corresponding to the action;
• stores in the belief base the postconditions of the action;
• stores in the belief base the belief of the agent on the fact that it has done

the action;
• sets the state of the behaviour to success;

• if the method returns false;
• sets the state of the behaviour to feasibility failure;

• on the contrary, does nothing.
If an exception occurs, sets the state to execution failure.

InformRefBehaviour
The Inform-Ref behaviour mainly consists in querying the belief base of the agent with the query
expressed in the content. If the content is a (all ?X …) expression, the query to the belief base
necessarily returns a result o, which is in fact an SL object of type “set” (possibly empty). In this
case, the performance of the Inform-Ref is always feasible.
If the content is a (iota ?X …) or a (any ?X …) expression, then the query to the belief base may
either return a result o or return no result (meaning that the agent cannot answer the query, based on
its current beliefs). In the first case, the performance of the Inform-Ref is feasible and consists in
sending an Inform performative, which has an equals formula f (with the result o) in its content. In
the second case, the performance of the Inform-Ref is not possible. If the simplification of the
formula f match the pattern (or (not (I ??agent1 (done ??act ??condition))) (I ??agent2 (done ??act

Jade Semantics Add-on Programmer's guide

Page 40 of 62

??condition))) instead of sending an Inform message, a propose message is sent. This case has
been introduced to work around a bug in the FIPA specification.

PrimitiveBehaviour
Basically, the performance of a primitive performative (Inform, Request, Confirm or Disconfirm)
consists in sending the corresponding message. The compute method only checks the feasibility
precondition of the action. It requires an access to the semantic action table to get this precondition,
as well as an access to the belief base to check their satisfaction.
We point out that the majority of the actions are defined by means of the primitive performatives.

OntoActionBehaviour
This behaviour models the performance of any ontological action. If the action is feasible; the action
is performed and the belief of feasibility precondition and belief of postcondition are considered as
internal events. The belief of the agent on the fact that it has done the action is stored in the belief
base.
This behaviour is automatically associated with an ontological action when this one extends the
OntologicalAction class (see next paragraph).

IntentionalBehaviour
This behaviour his mainly used by the ActionPerformance, the RationalityPrinciple, and the
Planning SIP to handle correctly the intentions of the agent. This behaviour extends
jade.core.behaviours.SequentialBehaviour, which has only one sub-behaviour. The onEnd
method is overridden like this:

• If the sub-behaviour finishes with success, this behaviour interprets the feedback if needed,
and sets its internal state to success.

• If the behaviour finishes with feasibility failure, the same intention is reinserted to be
interpreted by an other semantic interpretation principle with an upper index. In this case,
the state of the behaviour is set to feasibility failure;

• Finally, if the sub-behaviour finishes with execution failure, the state is set to execution
failure.

6.3 Communicative actions
This section reminds the reader of the list of communicative acts with a brief description. For each
action corresponds a class, whose name is the one of the action.

• Accept Proposal: it is the action of accepting a previously submitted proposal to perform an
action;

• Agree: the action of agreeing to perform some action, possibly in the future. This action is
the general-purpose agreement to a previously submitted Request to perform some action.
The agent sending the agreement informs the receiver that it does intend to perform the
action, but not until the given precondition is true;

• Cancel: the action of one agent informing another agent that the first agent no longer has the
intention that the second agent perform some action;

• Call For Proposal (CFP): the action of calling for proposals to perform a given action. The
content of this action contains an action expression denoting the action to be done, and a
referential expression defining a single-parameter proposition which gives the preconditions
of the action;

Jade Semantics Add-on Programmer's guide

Page 41 of 62

• Confirm: the sender informs the receiver that a given proposition is true, where the receiver
is known to be uncertain about the proposition;

• Disconfirm: the sender informs the receiver that a given proposition is false, where the
receiver is known to believe, or believe it likely that, the proposition is true;

• Failure: the action of telling another agent that an action was attempted but the attempt
failed. Failure is an abbreviation for informing that an act was considered feasible by the
sender, but was not completed for some given reason. The first part of the content is the
action not feasible. The second part is the reason for the failure, which is represented by a
proposition. It may be the constant true;

• Inform: the sender informs the receiver that a given proposition is true. The content of this
action is a proposition;

• Inform If: the sender informs the receiver whether or not a given proposition is true. The
content of this action is a proposition;

• Inform Ref: the sender informs the receiver the object which corresponds to a descriptor,
for example, a name. The content of this action is an object proposition (a referential
description);

• Not Understood: the sender of the act (for example agt1) informs the receiver (for example
agt2) that it perceived that agt2 performed some action, but that agt1 did not understand
what agt2 just did. A particular common case is that agt1 tells agt2 that agt1 did not
understand the message that agt2 has just sent to agt1. The first element of the message
content is the action agt1 has not understood. The second element is a proposition
representing the reason for the failure to understand.

• Propose: the action of submitting a proposal to perform a certain action, given certain
preconditions. The content contains an action description, representing the action that the
sender is proposing to perform, and a proposition representing the preconditions on the
performance of the action;

• Query If: this action is the action of asking another agent whether or not a given
proposition is true. The content of this action is a proposition;

• Query Ref: this action is the action of asking another agent for the object referred to by a
referential expression. The content of this action is a descriptor (a referential expression).

• Refuse: the action of refusing to perform a given action, and explaining the reason for the
refusal. The agent receiving a Refuse act is entitled to believe that:

• the action has not been done,
• the action is not feasible (from the point of view of the sender of the refusal),

and,
• the reason for the refusal is represented by a proposition which is the second

element of the content (which may be the constant true).
• Reject proposal: the action of rejecting a proposal to perform some action during a

negotiation. It is a general-purpose rejection to a previously submitted proposal. The agent
sending the rejection informs the receiver that it has no intention that the recipient performs
the given action under the given preconditions;

• Request: the sender requests the receiver to perform some action. The content of this action
is an action expression;

• Request When: the sender wants the receiver to perform some action when some given
proposition becomes true. The content contains a description of the action to perform, and
the proposition;

• Request Whenever: the sender wants the receiver to perform some action as soon as some

Jade Semantics Add-on Programmer's guide

Page 42 of 62

proposition becomes true and thereafter each time the proposition becomes true again. The
content of this action is a t-uple of an action expression and a proposition;

• Subscribe: the act of requesting a persistent intention to notify the sender of the value of a
reference, and to notify again whenever the object identified by the reference changes.

6.4 Adding new actions
The programmer has to override the setupSemanticActions method of the
SemanticCapabilities class. The addSemanticAction of the SemanticActionTable interface is
the method to use to add a new action:

public void setupSemanticActions() {
 super.setupSemanticActions();
 getMySemanticActionTable().addSemanticAction(new OntologicalAction(
 getMySemanticActionTable(),
 "(PUT-ON :clothing ??clothing)",
 SLPatternManip.fromFormula("(wearing ??sender ??clothing)"),
 SLPatternManip.fromFormula("(not (wearing ??sender ??clothing))")) {
 public void perform(OntoActionBehaviour behaviour) {
 ...
 }
 });

...
}

It is highly recommended to call the method super.setupSemanticActions, which makes it
possible to create a new instance of semantic actions table and to load the communicative actions.
Without it, the created agent will not have any communicative action if the user does not load them
explicitly and then the JSA is unable to automatically communicate with other agents using the
framework mechanisms. So, if the programmer uses another implementation of Semantic Action
table, the set-up of the table could be:

public void setupSemanticActions() {
mySemanticActionTable = new mySemanticActionTableImpl(this);
mySemanticActionTable.loadTable();
//Ontological actions
...

}

Ontological actions

The framework defines all the actions defined by the FIPA-ACL Specifications (gathered in the
jade.semantics.actions.performatives package). Of course, it is possible to define and add to
the semantic action table, ontological actions relative to a specific application. The
OntologicalAction class is there to help the programmer writing this kind of actions prototype.
The constructor has four parameters:

• the action table which this action prototype belongs to;
• the pattern used to recognize the SL functional term representing this action;

Jade Semantics Add-on Programmer's guide

Page 43 of 62

• the pattern used to both recognize SL formulae representing the rational effect of this action
and instantiate the SL formula representing the postcondition of this action;

• the pattern used to instantiate the SL formula representing the precondition of this action.
The next example shows a way to create such prototype:

new OntologicalAction(getMySemanticActionTable(),
 "(PUT-ON :clothing ??clothing)",
 SLPatternManip.fromFormula("(wearing ??sender ??clothing)"),
 SLPatternManip.fromFormula("(not (wearing ??sender ??clothing))")) {
 public void perform(OntoActionBehaviour behaviour) {
 ((ManAgent)myAgent).putOn(getActionParameter("clothing").toString());
 behaviour.setState(SemanticBehaviour.SUCCESS);
 }
}

All the metavariables of these patterns must refer to SL terms representing one of the arguments of
the action and must use the same names for these metavariables. These patterns may refer to the
reserved metareference "??sender", which denotes the agent of the action. A call to one of the
newAction methods creates instances of this ontological action prototype.

The behaviour associated to this action is provided by the perform method:

new OntologicalAction(getMySemanticActionTable(),
 "(PUT-ON :clothing ??clothing)",
 SLPatternManip.fromFormula("(wearing ??sender ??clothing)"),
 SLPatternManip.fromFormula("(not (wearing ??sender ??clothing))")) {
 public void perform(OntoActionBehaviour behaviour) {
 ((ManAgent)myAgent).putOn(getActionParameter("clothing").toString());
 behaviour.setState(SemanticBehaviour.SUCCESS);
 }
}

In this example, the perform method, which holds the Java code of the action, simply calls a method
of the agent. This method must be developed along the same way as the action method of the Jade
Behaviour class. This method is called by the OntoActionBehaviour associated to the ontological
action.

The OntologicalAction class provides several specific methods:
• The perform(OntoActionBehaviour) method is the implementation of the behaviour of

the ontological action. This method must be developed along the same way as the action
method of the Jade behaviour. This method must be overridden in all the subclasses (by
default, does nothing but sets the internal state to success constant).

• The getActionParameter(String) method returns a Term representing a parameter from
the given parameter name.

7 StandardCustomization
The StandardCustomization interface defines the methods to customize the JSA.

The first elements that can be customized this way are the Belief transfer and the Intention transfer
principles. Two methods can be implemented to do so:

Jade Semantics Add-on Programmer's guide

Page 44 of 62

• accceptBeliefTransfer(Formula, Term)
• acceptIntentionTransfer(Formula, Term)

In both cases, the 2 arguments are:
• The formula representing the belief to be asserted or the intention to be adopted;
• The agent who holds the original belief or intention.

Based on this information, a semantic agent can decide to accept or reject beliefs and intentions of
other agents. The next example illustrates how the belief transfer can be customized:

setMyStandardCustomization(new StandardCustomizationAdapter() {
 public boolean acceptBeliefTransfer(Formula formula, Term agent) {
 return (SLPatternManip.match("(temperature ??x)", formula)==null)
 &&(SLPatternManip.match("(not (temperature ??x))", formula)==null)
 &&(SLPatternManip.match("(temperature_gt ??x)", formula)==null)
 &&(SLPatternManip.match("(not (temperature_gt ??x))", formula)==null);
 }});

The acceptBeliefTransfer method of the sensor agent is implemented so that the agent only
believes facts from other agents that have nothing to do with the temperature. The second example
illustrates how the intention transfer can be customized:

setMyStandardCustomization(new StandardCustomizationAdapter() {
 public boolean acceptIntentionTransfer(Formula goal, Term agent) {
 String motherID = "(agent-identifier :name "+motherAID.getName()+")";
 return agent.equals(SLPatternManip.fromTerm(motherID))
 }});

The acceptIntentionTransfer of the son agent is implemented so that the agent only adopts
intention of his mother. Consequently, if another agent requests him to do any action, he will refuse.

The StandardCustomization object is also the means to properly handle some communicative acts
like the CFP or the Propose acts. Due to the formal semantics of these acts, there is no means to
automatically compute the JSA reaction. The provided methods are the following:

• The handleCFPIota(Variable, Formula, ActionExpression, Term) method returns a
list of elements that corresponds to the answer to the query. One and only one solution is
awaited;

• The handleCFPAny(Variable, Formula, ActionExpression, Term) method returns a
list of elements that corresponds to the answer to the query. One solution is awaited;

• The handleCFPAll(Variable, Formula, ActionExpression, Term) method returns a
list of elements that corresponds to the answer to the query. All the solutions are awaited.

• The handleCFPSome(Variable, Formula, ActionExpression, Term) method returns a
list of elements that corresponds to the answer to the query. All solutions are awaited.

For these three methods, the first parameter is the variable used within the formula. The second
formula represents the condition of the CFP. The third parameter is the requested action to be
performed. The last parameter is the agent who will perform the action if accepted.

• The handleRefuse(Term, ActionExpression, Formula) method returns true if this
method trap the specified formula when an agent (the first parameter) is no longer
committed to do an action (the second parameter) under a condition (the third parameter);

Jade Semantics Add-on Programmer's guide

Page 45 of 62

• The handleRejectProposal(Term, ActionExpression, Formula) returns true if the
specified formula is trapped when an agent (the first parameter) is no longer interested to do
an action (the second parameter) under a condition (the last parameter);

• The handleAgree(Term, ActionExpression, Formula) method returns true if the
specified formula is trapped when an agent (the first parameter) is committed to do an action
(the second parameter) under a condition (the last parameter);

• The handleProposal(Term, ActionExpression, Formula) method returns true if the
specified formula is trapped when an agent (the first parameter) is making a proposal (of
doing an action (the action the sender will perform in case of acceptance) (the second
parameter) under a condition (the third parameter) (the formula that represents the proposal
of the sender in order to perform the action) towards the Jade agent.

In the next example, the display agent handles the sensor's proposals in response to a previous CFP
(in the DisplayCapabilities class of the demo package).

setMyStandardCustomization(new StandardCustomizationAdapter() {

public boolean handleProposal(Term agent, ActionExpression action, Formula formula)
{

Term act = SLPatternManip.fromTerm("(action ??receiver (INFORM-REF
:content \"((any ?x (temperature ?x)))\" :receiver

(set ??agent) :sender ??receiver))");
MatchResult matchResult = SLPatternManip.match(act, action);
if (matchResult != null) {

Formula cond = SLPatternManip.fromFormula("(precision ??x)");
matchResult = SLPatternManip.match(cond, formula);
if (matchResult != null) {

((DisplayAgent)myAgent) .handleProposal(
(IntegerConstantNode)matchResult.getTerm("x"), agent, action, formula);

}
}
return true;}}

);

The code of this method only checks if the action and the condition are the ones of the sent CFP. In
this case, another method of the display agent is called that actually handle the proposal.

In the next example, the sensor agent handles the display's CFP message. The CFP condition is the
formula (precision ??X) and the precision of the sensor is returned as solution.

public ListOfTerm handleCFPAny(Variable variable, Formula formula, ActionExpression
action, Term agent) {

if (SLPatternManip.match(SLPatternManip.fromFormula("(precision ??X)"),
formula) != null) {

return myKBase.queryRef(new AnyNode(variable, formula));
}
else {

return null;
}

}

Finally, this class provides two methods to notify an agent when a Subscribe, RequestWhen,
RequestWhenever, or an Unsubscribe message occurs. That makes it possible to the programmer

Jade Semantics Add-on Programmer's guide

Page 46 of 62

to insert Java code to realize specific actions related to the application.
• The notifySubscribe(Term subscriber, Formula observed, Formula goal) method

notifies the agent that it has just receive a subscribe from the subscriber on the formula
"observed" with the goal "goal";

• The notifyUnsubscribe(Term subscriber, Formula observed, Formula goal)
method notifies the agent that it has just receive an unsubscribe from the subscriber on the
formula "observed" with the goal "goal".

For example:

// Sets the colour to yellow when it receives a subscribe
public void notifySubscribe(Term subscriber, Formula obsverved, Formula goal) {

((SensorAgent)myAgent).setSubscribed(true);
}
//Sets the colour to gray when it receives an unsubscribe
public void notifyUnsubscribe(Term subscriber, Formula obsverved, Formula goal)
{

((SensorAgent)myAgent).setSubscribed(false);
}

void setSubscribed(boolean subscribed) {
if (subscribed) {

mainPanel.setBackground(Color.YELLOW);
}
else {

mainPanel.setBackground(Color.GRAY);
}

}

The StandardCustomizationAdapter provides a basic implementation of the
StandardCustomization interface. By default, each method does nothing.

8 Planner
Planners are used to find a plan that reaches a given goal. No specific planner is provided by the
framework. The programmer has to provide his/her own planner. This one must implement the
interface Planner, which defines only one method: findPlan(Formula,
SemanticRepresentation). The method returns a Jade Behaviour corresponding to the execution
of a plan which makes it possible to reach the given goal.

9 Semantic interpretation principles
The Semantic interpretation principles (SIPs) are related to the behaviour of the agent and provide
the basic means to produce and consume SRs. Each SIP is applicable on a specific pattern (that
should match the SL Formula of the incoming SR) and the application of each SIP results in
querying or updating the agent's belief base and adding to, or removing behaviours from the agent.
A SIP is defined by a pattern (to test if it is applicable), the position of it in the table and the
SemanticCapabilities object to which it belongs. The SIPS are stored in an ordered table.

9.1 Semantic interpretation principles table
The SemanticInterpretationPrincipleTable class defines the SIPs ordered list. This interface
provides all the methods to manage the SIPs:

Jade Semantics Add-on Programmer's guide

Page 47 of 62

• The addSemanticInterpretationPrinciple(SemanticInterpretationPrinciple)
method adds a new semantic interpretation principle at the end of the table. Sets the inner sip
index at the correct value;

• The addSemanticInterpretationPrinciple(SemanticInterpretationPrinciple ,
int) method adds a semantic interpretation principle in the table at the specified index. Sets
the inner sip index ;

• The removeSemanticInterpretationPrinciple(Finder) method removes all the
semantic interpretation principles that correspond to the finder;

• The getSemanticInterpretationPrinciple(int) method returns the semantic
interpretation principle at the specified index in the table;

• The loadTable(SemanticCapabilities) method loads all the semantic interpretation
principles in the table for the specified agent;

• The size() method returns the size of the table;

• The removeSemanticInterpretationPrinciple(int) method removes the semantic
interpretation principle at the specified index.

9.2 List of generic SIPs
In this section standard SIP provided within the framework are presented in the order they are in the
table.

• And: This SIP is intended to be applied to an AND formula of the form (and φ ψ). It
produces two Semantic Representations: the left part of the conjunction (i.e. φ), and the right
part of the conjunction (i.e. ψ).

• EqualsIRE: This SIP is applicable on formulae of the form (B agent (= ??ire ??phi)). The
identifying expression ??ire is of the form (op t f) where op is an operator of the set {iota,
all}, t a term, and f a formula. ??phi is a formula.

If the operator is equal to all, and ??phi is a no empty set, the sip returns new several SR:

• a SR of the form (B agent (= ??ire (set))) that indicates the agent knows all values that
make the formula f true.

• for each value of the set, a SR of the form (B agent f) is generated, where the variables in
f are replaced by the values of the set.

If the operator is equals to iota, the sip returns two SR:

• a SR of the form (B agent (= (all t f) (set))) that indicates the agent knows all values that
make the formula f true.

• a SR of the form (B agent f) is generated, where the variables in f are replaced by the
corresponding values in ??phi.

• ActionFeatures: This principle is intended to be applied to the initial formula representing
the fact that the Jade agent has perceived an incoming ACL message (B ja (done (action s
(PERFORMATIVE :sender s :receiver r :content “c”)) true)). It produces four new
Semantic Representations :

• one for checking the consistency. This SR is not expected to be used further by others

Jade Semantics Add-on Programmer's guide

Page 48 of 62

SIPs;

• one stating that the Jade agent believes the persistent feasibility precondition of the
received message is satisfied.

• one stating the Jade agent believes the intentional effect of the received message.

• the last is the postcondition of an action, the performance of which has just been
observed by the Jade agent.

• AlreadyReachedGoal: This SIP traps the intentions of the semantic agent that the semantic
agent already believes. This thus makes it possible to avoid useless calculations. This SIP is
applicable on formulae of the form (I ja φ);

• BeliefTransfer: This semantic interpretation principle expresses a necessary cooperation
principle of the Jade agent towards the beliefs that the sender (of an ACL message) intends
to communicate. Typically, this SIP is used to interpret incoming Inform messages.
Pragmatically, it infers a belief such as (B ja φ) from a previously deduced SL formula such
as (B ja (I s (B ja φ))). This inference is not always desirable, so that this step is actually
applied under some conditions that evaluate if the Jade agent accepts a belief φ from an
agent s. For example, the Jade agent may not trust certain agents and so may not come to
believe necessarily what they tell. In order to avoid some new heterogeneous mechanism,
this condition is evaluated by asking the belief base of the Jade agent if a certain formula
holds, namely (implies (I s (B ja φ)) (B ja φ)) , that is, does the Jade agent come to believe φ
if an agent s intends him/her to do so;

• RequestWhen: This SIP enables the Jade agent to add an observer to the belief base. This
observer can be triggered only once. This SIP is applicable on formula of the form (B ??
agent (I subscriber (done act (and (B agent subscribeProperty) (exists ?e (done ?e (not (B
agent subscribeProperty)))))))). The apply method calls the notifySubscribe method of
the StandardCustomization class. The RequestWhen class inherits the Subscription
class;

• IntentionTransfer: This SIP expresses a necessary cooperation principle of the Jade agent
(receiving the ACL message) towards the intentions that the sender intends to communicate.
This SIP is typically used to interpret incoming Request messages or Inform messages, the
content of which being an intention of the sender. This SIP is actually applied under some
conditions, which are evaluated by asking the belief base of the Jade agent with a question,
regarding an intention transfer. When applied, this step actually infers two new SL formulae:

• If the intention transfer is allowed, infers (I agent φ), expressing the adoption of the
intention by the Jade agent, and, optionally (depending on the targeted behaviour of the
Jade agent), (I agent (B s (I agent φ))), expressing the intention of the Jade agent to give
a feedback of this intention transfer to the sender of the message (which should generally
give rise to an Agree message towards the sender).

• If the intention transfer is forbidden, infers (not (I agent φ)) and, optionally, (I agent (B s
(not (I agent φ)))) (which should generally give rise to a Refuse message towards the
sender);

• Planning: This principle provides the Jade agent with a more general mean of planning than
the previous ones (rationality principle and action performance). It calls an external
component that returns a Jade behaviour that implements a way to reach an input goal φ, and

Jade Semantics Add-on Programmer's guide

Page 49 of 62

adds this behaviour to the agent. As above, this behaviour is also encapsulated in an
IntentionalBehaviour that memorizes the triggering intention and deletes it from the
agent belief base if it succeeds. If no Jade behaviour can be found by the planning
component, this step does nothing. This SIP is applicable on formulae of the form (I agent
φ);

• ActionPerformance: this SIP provides some basic planning for goals of the form (done a
true), where a is a (possibly complex expression of) action, the author of which is the Jade
agent. It consists in adding to the Jade agent a Jade Semantic Behaviour performing the
targeted semantic action a. This Behaviours is encapsulated into an IntentionalBehaviour
(see paragraph 6.2) which memorizes the triggering intention (namely the goal (done a true))
so that it can delete it from the agent belief base if it succeeds in performing the action;

• RationalityPrinciple: This step enables the Jade agent to compute some trivial planning
according to the rationality principle. This SIP is applicable on formulae of the form (I agent
φ). It looks for all the semantic actions available to the Jade agent, the rational effect of
which matches the intention φ of the Jade agent. It then builds (and add to the agent) a Jade
semantic behaviour implementing one of these actions (which is represented by an
alternative action expression). This behaviour is encapsulates in an IntentionalBehaviour
(see paragraph 6.2), which memorizes the goal φ, so that it can delete the corresponding
intention from the agent belief base if it succeeds in reaching this goal. Obviously, this kind
of planning can only find plans for goals that exactly match the rational effect of a
communicative act known by the Jade agent. For example, from an intention of the form (I
agent (B r (p))), this step adds a Jade Behaviour implementing the alternative:

(| (action ja (INFORM :sender ja :receiver r :content “((p))”))
(| (action ja (CONFIRM :sender ja :receiver r :content “((p))”))
(action ja (DISCONFIRM :sender ja :receiver r :content “((not

(p)))”))
)

)

Indeed, the mentioned Inform, Confirm and Disconfirm acts are exactly the ones that the
Jade agent knows (from his FIPA performative library) and that have (B r (p)) as rational
effect;

• Refuse: This principle is intended to be applied if an agent is no longer committed to do an
action under a condition. This principle may be applied when the Jade agent receives a
Cancel or a Refuse message. This SIP is applicable on formulae of the form (not (I agent
(done (action agent act) φ))). The apply method calls the handleRefuse method of the
StandardCustomization class;

• RejectProposal: This principle is intended to be applied if an agent is no longer interested
in the Jade agent doing an action under a condition. The Jade agent may then drop his
behaviour that currently seeks performing this action. This principle may be applied when
the Jade agent receives a Cancel or a RejectProposal message. This SIP is applicable on
formulae of the form (not (I agentI (done (action agent2 act) φ))). The apply method of the
SIP calls the method handleRejectProposal of the StandardCustomization class;

• Agree: This principle is intended to be applied if an agent is committed to do an action

Jade Semantics Add-on Programmer's guide

Page 50 of 62

under a condition. This principle may be applied when the Jade agent receives an Agree
message. This SIP is applicable on formulae of the form (I agent (done (action agent act)
φ)). The apply method of the SIP calls the method handleAgree of the
StandardCustomization class;

• Propose: This principle is intended to be applied when an agent receives a Propose message.
This SIP is applicable on formulae of the form (B agent1 (or (not (I agent1 (done act φ))) (I
agent2 (done act φ)))). The apply method of the SIP calls the method handleProposal of
the StandardCustomization class;

• RequestWhenever: This SIP enables the Jade agent to add an observer to the belief base.
This SIP is applicable on formulae of the form (or (not (B agent subscribeProperty)) (or (I
subscriber goal) (forall ?e (not (done ?e (not (B agent subscribeProperty))))))). The apply
method calls the notifySubscribe method of the StandardCustomization class. The
RequestWhenever class inherits the Subscription class;

• Subscribe: This SIP enables the Jade agent to add an observer to the belief base. This SIP is
applicable on formulae of the form (or (I subscriber goal) (or (forall ?y (not (B agent ire)))
(forall ?e (not (done ?e (forall ?y (not (B agent ire))))))))). The apply method calls the
notifySubscribe method of the StandardCustomization class. The Subscribe class
inherits the Subscription class;

• Unsubscribe: This principle is intended to be applied when an agent receives an
UnSubscribe message. This SIP is applicable on formulae of the form (B agent (or (not (B
agent property)) (or (not (I subscriber goal)) (forall ?e (not (done ?e (not (B agent property
)))))))) or of the form (B agent (not (I subscriber goal))). If the SIP is applicable, it removes
the observer related to the specified property. The apply method calls the
notifyUnsubscribe of the StandardCusomization class;

• UnreachableGoal: This principle is intended to be applied to all intentions that have not
been realised. These intentions are considered as not feasible. If the intention becomes from
a request of another agent, a new SR is generated in order to inform the other agent, that the
intention is not feasible. The new SL formula is of the form (I agent (B r (forall ?e (not (B
agent (feasible ?e φ)))))), meaning the agent agent has the intention that r believes that
agent thinks that there is not an unspecified event after which φ would be true. This SIP is
applicable on formulae of the form (I agent φ).

9.3 Adding new SIPs
The programmer has to override the setupSemanticInterpretationPrinciples method of the
SemanticCapabilities class:

public void setupSemanticInterpretationPrinciples(){
 super.setupSemanticInterpretationPrinciples();
 getMySemanticInterpretationTable().addSemanticInterpretationPrinciple(
new mySIP(this));
}

It is highly recommended to call the method

Jade Semantics Add-on Programmer's guide

Page 51 of 62

super.setupSemanticInterpretationPrinciples(), which makes it possible to create a new
instance of SIP table and to load the generic SIPs. Without it, the created agent will not have any
SIP if the user does not load them explicitly and then the JSA is unable to automatically
communicate with other agents using the framework mechanisms.

The SemanticInterpretationPrincipleTable interface provides two constants to help the
addition of new SIP:

• Front is used to add a SIP at the beginning of a list;
• End is used to add a SIP at the end of the list

Warning:
The programmer must be very careful if s/he wishes to add a new SIP. As the table of SIP is
ordered, the place where the SIP is inserted must be chosen with caution. For example, the added
SIP can catch formula and then stop the classical interpretation mechanism in some case it should
not. A SIP that has a formula more specific that another must be placed before in the list.

In all the cases, it is necessary to use the addSemanticInterpretationPrinciple method (of the
SemanticInterpretationTable class) in order to be sure that the inner index of each SIP is
correct.

We advise programmers to add their applicative SIP at the beginning of the table.

9.4 Examples of semantic interpretations
This section presents examples of how the interpretation process based on the SIPs applies on FIPA
acts with various contents. The next figure shows the interpretation process for a simple Inform
message.

An incoming message is represented by the formula:

(B receiver (done (action sender message) true))
This formula states that the agent receiver believes the action of the agent sender sending the
message message has just occurred. In the case presented in the example of figure 4, the agent ja
believes that the agent sender has just informed it that the temperature is ten.

The SIP index of SR of an incoming message is always 0. That means that the SIPs are tested from
the beginning of the table. The first SIP tested by the SemanticInterpreterBehaviour is
ActionFeature SIP. It is applicable and produced four new SRs with their SL formula represented
in the figure and with a SIP index set at 0. The feasibility precondition formula is not represented
because it is never used further and its writing would have been too large for the figure. No SIP is
applicable on the persistent precondition and the postcondition. These formulae are then asserted in
the belief base. On the other hand, the BeliefTransfer SIP is applicable on the rational effect
formula and produces a new SR (we suppose here that the belief transfer is possible between the
two agents). No SIP is applicable on this new SR, which is asserted in the belief base. At least, the
agent ja knows that the temperature is 10 as it has (temperature 10) in its belief base.

Jade Semantics Add-on Programmer's guide

Page 52 of 62

Figure 5 shows the interpretation process for a Request message. For this purpose, let us consider
the very simple ontological action WAIT (extracted from the temperature demo):

new OntologicalAction(getMySemanticActionTable(),
 "(WAIT :time ??time)",
 SLPatternManip.fromFormula("true"),
 SLPatternManip.fromFormula("true")){
 private long wakeupTime = -1, blockTime;

 public void perform(OntoActionBehaviour behaviour) {
 switch (behaviour.getState()) {
 case SemanticBehaviour.START: {
 // Adjust wakeupTime in case the user set a relative time
 if (wakeupTime == -1) {
 wakeupTime = System.currentTimeMillis()+

(B ja (done (action sender (INFORM :sender sender :receiver ja :content “((temperature 10))”)) true))

ActionFeatures

Feasibility precondition

Persistent precondition
Rational effect

Postcondition

(B ja (B sender (temperature 10)))

(B ja (I sender (B ja (temperature 10))))

(B ja (B sender (B ja (temperature 10))))

...

BeliefTransfer

 (B ja (temperature 10))

Knowledge
base

Asserts

Asserts

Asserts

Figure 4: Example of an Inform message interpretation

Jade Semantics Add-on Programmer's guide

Page 53 of 62

Long.parseLong((getActionParameter("time").toString()));
 }
 // in this state the behaviour blocks itself
 blockTime = wakeupTime - System.currentTimeMillis();
 if (blockTime > 0) behaviour.block(blockTime);
 behaviour.setState(1000);
 break;
 }
 case 1000: {
 // in this state the behaviour can be restarted for two reasons
 // 1. the timeout is elapsed and then the behaviour is definitively
 // finished)
 // 2. a message has arrived for this agent then it blocks again
 blockTime = wakeupTime - System.currentTimeMillis();
 if (blockTime <= 0) {
 // timeout is expired
 behaviour.setState(SemanticBehaviour.SUCCESS);
 } else behaviour.block(blockTime);
 break;
 }
 default : {
 // this case should not occur
 behaviour.setState(SemanticBehaviour.EXECUTION_FAILURE);
 break;
 }
 } // end of switch
}

The postcondition and the precondition of this action are the formula “true”, meaning that there is
not any special condition to do it. The perform method checks if the behaviour has just started or if
it has already been block for the time period. In the first case, the perform method blocks the
behaviour for the time delay. In the second case, it simply returns a successful state.

The following figure shows the interpretation process for a Request incoming message. The agent
sender requests the agent ja to wait a while. The figure shows the typical case where the author of
the requested action is the Jade agent. The action performance deductive step may then be applied
so that the Jade agent adds a new semantic behaviour implementing the performance of the action.
The figure also shows the usage of the rationality principle to trigger the performance of an Agree
message.

If the author of the requested action is different from the Jade agent, then the rationality principle or
the more general planning deductive step should be applied.

Jade Semantics Add-on Programmer's guide

Page 54 of 62

(B ja (done (action sender (REQUEST :sender sender :receiver ja :content “(action ja (WAIT :time 100))”))
true))

ActionFeatures

Feasibility precondition

Persistent precondition Rational effect
Postcondition

(B ja true)

(B ja (I sender (done (action ja
(WAIT :time 100)) true)))

(B ja (B sender (B ja (done (action ja
(WAIT :time 100)) true))))

...

IntentionTransfer

 (I ja (done (action ja
(WAIT :time 100)) true))

Knowledge
base

Asserts

Asserts

Asserts

 (I ja (B sender (I ja (done
(action ja (WAIT :time
100)))))

Perform WAIT

Perform (AGREE :sender ja :receiver sender :content”((action ja (WAIT:time 100))(true))”)

RationalityPrinciple

ActionPerformance

Figure 5: Example of a Request message interpretation

Jade Semantics Add-on Programmer's guide

Page 55 of 62

9.5 Example of applicative SIPs
Let us suppose that in an application, an agent needs to show a photo in a panel. It is a behavioural
aspect of the agent and so should be done by a SIP. For example, the code could be the following:

public class ViewerSIPContent extends SemanticInterpretationPrinciple {
 private Formula pattern;
 private PhotoPanel photoPanel;

 public ViewerSIPContent(SemanticCapabilities capabilities, PhotoPanel pp) {
 super(capabilities);
 pattern = SLPatternManip.fromFormula("(B ??agent (image-content ??id ??
content))");
 photoPanel = pp;
 }

 public ArrayList apply(SemanticRepresentation sr)
 throws SemanticInterpretationPrincipleException {
 MatchResult applyResult = SLPatternManip.match(pattern,
sr.getSLRepresentation());
 if (applyResult != null) {

try {
 byte[] bytes =
((ByteConstantNode)applyResult.getTerm("content")).lx_value();
 photoPanel.setPhoto(JPEGUtilities.load(new
ByteArrayInputStream(bytes)));
 return new ArrayList();
 } catch (SLPatternManip.WrongTypeException wte) {}
 }
 return null;
 }
}

In the constructor, the pattern which makes it possible to test the applicability of the SIP is set like
the panel where the image should be shown.

In the apply method, the first step is to test if the SIP is applicable. If not, the method returns null.

If the SIP is applicable, it gets the content of the photo (the bytes array representing the photo) in the
incoming formula and then sets the image in the panel. The method returns an empty list to indicate
that the SIP applied. The list is empty because it is not wished that other SIP use this Semantic
representation or that information is asserted in the base.

Let us suppose now that when a new photo is added, the name of the photo should appears in a list
of the IHM. It is a another behavioural aspect of the agent and so should be done by a SIP. For
example, the code could be the following:

public class ViewerSIPImgDescr extends SemanticInterpretationPrinciple {
 private Formula pattern;
 private PhotoPanel photoPanel;
 public ViewerSIPAllImgDescr(SemanticCapabilities capabilities, PhotoPanel pp) {
 super(capabilities);
 pattern = SLPatternManip.fromFormula("(B ??agent (= (all (sequence ??id ??

Jade Semantics Add-on Programmer's guide

Page 56 of 62

desc) (image-description ??id ??desc)) (set)))");
 photoPanel = pp;
 }

 public ArrayList apply(SemanticRepresentation sr)
 throws SemanticInterpretationPrincipleException {
 MatchResult applyResult = SLPatternManip.match(pattern,
sr.getSLRepresentation());
 if (applyResult != null) {
 try {
 photoPanel.addPhotoDescription(applyResult.get);
 ArrayList list = new ArrayList();
 sr.setSemanticInterpretationPrincipleIndex(sr.getSemanticInterpretation
PrincipleIndex() + 1);
 list.add(sr);
 return list;
 } catch (SLPatternManip.WrongTypeException wte) {}
 }
 return null;
 }
}

In this case, the constructor in the same as the previous one for another pattern.
If the SIP is applicable, the list of photos is modified. The method returns a SR list to indicate that
the SIP applied. On the other hand, the same SR is added in this list because it is wished that the
incoming formula be asserted in the belief base (and perhaps analysed by other SIP). However, its
internal index is increased by 1 to prevent that this same SIP applies again.

10 Useful classes

10.1 Finder class
This class of the jade.semantics.intrepeter package represents a general object that permits
object identification. It should be extended to handle the specific need of a particular identification.
This class provides two methods:

• The identify(Object) method returns true if the object passed in parameter is identified
by this identifier, false in the other case. By default, this method returns false. It should be
overridden. For example,

((SemanticAgent)myAgent).getSemanticCapabilities().getMyKBase().removeFormula(
 new Finder() {
 public boolean identify(Object object) {
 Formula pattern = SLPattern.fromFormula(“(B ??agent ??phi)”);
 if (object instanceof Formula) {
 return (SLPatternManip.match(observedPattern, ((Formula)object)) !=
null);
 }
 }
);

In this example, the finder looks for Formula that matches the pattern (B ??agent ??phi).
If it finds one of them, this one is then removed from the belief base.

• The removeFromList(ArrayList) method removes an object of the list if it is identified.

Jade Semantics Add-on Programmer's guide

Page 57 of 62

10.2 Tools class
The Tools class of the jade.semantics.intrepeter package provides useful methods:

• The term2AID(Term) method returns the AID corresponding to the term representing an
agent;

• The AID2Term(AID) method returns the term representing an agent to the corresponding
AID;

• The isCommunicativeActionFromMeToReceiver(ActionExpression, Term,
SemanticAgent) method tests if the action expression given in parameter is a
communicative action from the current semantic agent to the specified receiver.

10.3 Util class
The Util class of the jade.semantics.lang.sl.tools package provides useful method to handle
SL formulas.

• The buildAndNode(ListOfNodes) method returns a AndNode formula built with the
formulae of the given list. If the size of the list equals 1, it returns the only formula of the list
(which is not necessary an AndNode formula). If the size of the list equals 0 or if the list is
null, returns null.

• The buildOrNode(ListOfNodes) method returns a OrFormula formula built with the
formulae of the given list. If the size of the list equals 1, it returns the only formula of the
list. If the size of the list equals 0 or if the list is null, returns null.

• The instantiateInMatchResult(MatchResult, String, Node) method returns true if
a metavariable of the given MatchResult has the given varName in and if it succeeds in
giving it the given value.

11 Appendix
This paragraph presents the SL grammar.

--
-- CONTENT
--
CONTENT ::= content
 => as_expressions : CONTENT_EXPRESSION_S
{
 String toSLString();
 Node getContentElement(int i);
 void setContentElement(int i, Node element);
 void addContentElement(Node element);
 void setContentElements(int number);
 int contentElementNumber();
 jade.semantics.lang.sl.tools.MatchResult match(Node expression);
 Node instantiate(String varname, Node expression);
};
content =>;
--
-- CONTENT_EXPRESSION
--
CONTENT_EXPRESSION_S ::= Seq of CONTENT_EXPRESSION;
CONTENT_EXPRESSION ::= action_content_expression

Jade Semantics Add-on Programmer's guide

Page 58 of 62

 | identifying_content_expression
 | formula_content_expression
 | meta_content_expression_reference
{
 Node getElement();
};
action_content_expression => as_action_expression : ACTION_EXPRESSION;
identifying_content_expression => as_identifying_expression :
IDENTIFYING_EXPRESSION;
formula_content_expression => as_formula : FORMULA;
meta_content_expression_reference => lx_name : (java.lang.String),
 sm_value : CONTENT_EXPRESSION;
--
-- FORMULA
--
FORMULA_S ::= Seq of FORMULA;
FORMULA ::= ATOMIC_FORMULA

 | UNARY_LOGICAL_FORMULA
 | MODAL_LOGIC_FORMULA

 | ACTION_FORMULA
 | QUANTIFIED_FORMULA

 | BINARY_LOGICAL_FORMULA
 | meta_formula_reference
=> sm_simplified_formula : FORMULA

{
 FORMULA getSimplifiedFormula();
 void simplify();
 boolean isMentalAttitude(TERM term);
 boolean isSubsumedBy(FORMULA formula);
 boolean isConsistentWith(FORMULA formula);
 FORMULA getDoubleMirror(TERM i, TERM j, boolean default_result_is_true);
 boolean isAFreeVariable(VARIABLE x);
 FORMULA getVariablesSubstitution(VARIABLE_S vars);
 FORMULA getVariablesSubstitutionAsIn(FORMULA formula);
 FORMULA getVariablesSubstitution(VARIABLE x, VARIABLE y);
 FORMULA isBeliefFrom(TERM agent);
 jade.semantics.lang.sl.tools.MatchResult match(Node expression);
 Node instantiate(String varname, Node expression);
};
meta_formula_reference => lx_name : (java.lang.String),

 sm_value : FORMULA;
--
-- UNARY_LOGICAL_FORMULA
--
UNARY_LOGICAL_FORMULA ::= not

 => as_formula : FORMULA;
not =>;
--
-- ATOMIC_FORMULA
--
ATOMIC_FORMULA ::= proposition_symbol
 | result

Jade Semantics Add-on Programmer's guide

Page 59 of 62

 | predicate
 | true
 | false

 | equals;
proposition_symbol => as_symbol : SYMBOL;
result => as_term1 : TERM,
 as_term2 : TERM;
predicate => as_symbol : SYMBOL,
 as_terms : TERM_S;
true =>;
false =>;
equals => as_left_term : TERM,
 as_right_term : TERM;
--
-- MODAL_LOGIC_FORMULA
--
MODAL_LOGIC_FORMULA ::= believe
 | uncertainty
 | intention
 | persistent_goal

 => as_agent : TERM,
 as_formula : FORMULA;

believe =>;
uncertainty =>;
intention =>;
persistent_goal =>;
--
-- ACTION_FORMULA
--
ACTION_FORMULA ::= done
 | feasible
 => as_action : TERM,

 as_formula : FORMULA; -- Added by TM July, 29th, 2004.
done =>;
feasible =>;
--
-- QUANTIFIED_FORMULA
--
QUANTIFIED_FORMULA ::= exists
 | forall

 => as_variable : VARIABLE,
 as_formula : FORMULA;

exists =>;
forall =>;
--
-- BINARY_LOGICAL_FORMULA
--
BINARY_LOGICAL_FORMULA ::= implies

 | equiv
 | or

 | and
=> as_left_formula : FORMULA,

Jade Semantics Add-on Programmer's guide

Page 60 of 62

 as_right_formula : FORMULA;
implies =>;
equiv =>;
or =>;
and =>;
--
-- TERM
--
TERM_S ::= Seq of TERM;
TERM ::= VARIABLE
 | CONSTANT
 | TERM_SET
 | TERM_SEQUENCE
 | FUNCTIONAL_TERM
 | ACTION_EXPRESSION
 | IDENTIFYING_EXPRESSION
 | meta_term_reference
 => sm_simplified_term : TERM
{
 TERM getSimplifiedTerm();
 void simplify();
 jade.semantics.lang.sl.tools.MatchResult match(Node expression);
 Node instantiate(String varname, Node expression);
};
meta_term_reference => lx_name : (java.lang.String),

 sm_value : TERM;
--
-- IDENTIFYING_EXPRESSION
--
IDENTIFYING_EXPRESSION ::= any

 | iota
 | all

 | some
 => as_term : TERM,

 as_formula : FORMULA;
any => ;
all => ;
iota => ;
some => ;
--
-- VARIABLE
--
VARIABLE_S ::= Seq of VARIABLE;
VARIABLE ::= variable
 | meta_variable_reference
 => lx_name : (java.lang.String);
variable => ;
meta_variable_reference => sm_value : VARIABLE;
--
-- CONSTANT
--
CONSTANT ::= integer_constant

Jade Semantics Add-on Programmer's guide

Page 61 of 62

 | real_constant
 | STRING_CONSTANT
 | date_time_constant
{

Long intValue();
Double realValue();
String stringValue();

};
STRING_CONSTANT ::= string_constant
 | word_constant
 | byte_constant;
integer_constant => lx_value : (java.lang.Long);
real_constant => lx_value : (java.lang.Double);
string_constant => lx_value : (java.lang.String);
word_constant => lx_value : (java.lang.String);
byte_constant => lx_value : (byte[]);
date_time_constant => lx_value : (java.util.Date);
--
-- TERM_SET
--
TERM_SET ::= term_set;
term_set => as_terms : TERM_S;
--
-- TERM_SEQUENCE
--
TERM_SEQUENCE ::= term_sequence;
term_sequence => as_terms : TERM_S;
--
-- ACTION
--
ACTION_EXPRESSION ::= action_expression
 | alternative_action_expression
 | sequence_action_expression
 => sm_action : (jade.semantics.actions.SemanticAction)
{
 TERM_S getAgents();
};
action_expression => as_agent : TERM,
 as_term : TERM;
alternative_action_expression => as_left_action : TERM,

 as_right_action : TERM;

sequence_action_expression => as_left_action : TERM,
 as_right_action : TERM;

--
-- FUNCTIONAL_TERM
--
FUNCTIONAL_TERM ::= functional_term
 | functional_term_param

 => as_symbol :SYMBOL;
functional_term => as_terms : TERM_S;

Jade Semantics Add-on Programmer's guide

Page 62 of 62

functional_term_param => as_parameters : PARAMETER_S
{
 TERM getParameter(String name);
 void setParameter(String name, TERM term);
};
--
-- PARAMETER
--
PARAMETER_S ::= Seq of PARAMETER;
PARAMETER ::= parameter

 => lx_name : (java.lang.String),
 lx_optional : (java.lang.Boolean),
 as_value : TERM;
parameter =>;
--
-- SYMBOL
 --
SYMBOL ::= symbol
 | meta_symbol_reference;
symbol => lx_value : (java.lang.String);
meta_symbol_reference => lx_name : (java.lang.String),

 sm_value : SYMBOL;

	1Introduction
	1.1Concepts
	1.2Semantic interpretation algorithm
	1.3Packages overview

	2Jade Semantic Agent
	2.1The SemanticAgent interface and the SemanticAgentBase class
	2.2The SemanticCapabilities class
	2.3Adding semantic capabilities to an existing Jade agent

	3FIPA SL language handling
	3.1Grammar
	3.2Normal form of SL expression
	3.3Pattern matching
	3.3.1Generality
	3.3.2AndNode & OrNode
	3.3.3EqualsNode
	3.3.4Optional parameters

	3.4Dynamic building of SL expressions

	4Semantic Representation
	5Belief base
	5.1Principles
	5.2The Filter belief base
	5.2.1Filters
	5.2.1.1Assert filters
	5.2.1.2Query filters
	5.2.1.3FiltersDefinition class
	5.2.1.4Adding new filters
	5.2.1.5Removing beliefs from the base

	5.2.2Observers

	6Semantic Actions
	6.1Semantic action table
	6.2Semantic action behaviours
	6.3Communicative actions
	6.4Adding new actions

	7StandardCustomization
	8Planner
	9Semantic interpretation principles
	9.1Semantic interpretation principles table
	9.2List of generic SIPs
	9.3Adding new SIPs
	9.4Examples of semantic interpretations
	9.5Example of applicative SIPs

	10Useful classes
	10.1Finder class
	10.2Tools class
	10.3Util class

	11Appendix

