
Page 1

J A D E T U TO R I A L

J A D E P R O G R A M M I N G F O R A N D R O I D

USAGE RESTRICTED ACCORDING TO LICENSE AGREEMENT.

last update: 14 June 2012. JADE 4.2.0

Authors: Giovanni Caire (Telecom Italia S.p.A.)

 Giovanni Iavarone (Telecom Italia S.p.A.)

 Michele Izzo (Telecom Italia S.p.A.)

 Kevin Heffner (PEGASUS SIMULATION)

JADE - Java Agent DEvelopment Framework is a framework to develop multi-agent systems in compliance with the FIPA specifications.

JADE successfully passed the 1st FIPA interoperability test in Seoul (Jan. 99) and the 2nd FIPA interoperability test in London (Apr. 01).

Copyright (C) 2000 CSELT S.p.A. (C) 2001 TILab S.p.A. (C) 2002 TILab S.p.A.

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published

by the Free Software Foundation, version 2.1 of the License.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Page 2

TABLE OF CONTENTS

1 INTRODUCTION 3

2 INSTALLING AND RUNNING THE CHAT PLATFORM 4

2.1 Downloading the Chat platform software 4

2.2 Starting the Chat Server 5

2.3 Starting Standard Chat clients 6

2.4 Installing and Starting the Android Chat Client 7

3 BUILDING THE ANDROID CHAT CLIENT WITH ECLIPSE 11

3.1 Creating the Android Chat client Project 11

3.2 Copying Android Chat client sources in the project 14

3.3 Running the project 14

4 HOW THE CHAT APPLICATION WORKS 15

4.1 Application structure 15
4.1.1 Resources 15

4.1.2 Classes 16

4.2 Starting JADE and creating agents 17
4.2.1 Binding to the service 17
4.2.2 Starting a JADE split Container 17
4.2.3 Starting an Agent 18

4.3 GUI components to Agent interactions 18

4.4 Agent to GUI components interactions 19

Page 3

1 INTRODUCTION

This document describes how to create JADE-based applications running on the Android Operating

System. The reader is assumed to be already familiar with both JADE, Android programming and the

Eclipse development environment that is typically used to create Android applications. If this is not the

case we do recommend the following documents before going ahead.

 JADE Programming tutorial (http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-

beginners.pdf)

 JADE Administration guide (http://jade.tilab.com/doc/tutorials/JADEAdmin/index.html)

 Android Tutorial (http://developer.android.com/resources/tutorials/hello-world.html)

Though applications intended to run in an Android environment are fully written in Java, the application

model is quite different with respect to that of normal Java applications. In order to meet Android

requirements and specificities an ad-hoc version of JADE (that will be referred to as JadeAndroid) has

been created. JadeAndroid is directly available for download as a jar archive in the download area of the

JADE web site. People interested in modifying or recompiling it should download the JADE sources plus

the LEAP Add-on and follow the instructions included in the LEAP User Guide.

In order to show the main steps that are typically necessary to create a JADE-based Android application,

this tutorial makes use of a minimal Chat platform whose complete sources are available for download at

http://jade.tilab.com/papers-examples.htm.

The tutorial is structured as follows:

Section 2 presents the Chat platform and shows how to install and run it;

Section 3 shows how to create and properly configure the Eclipse project where the Android Chat Client

application can be built and customized;

Section 4 goes into the internals of the Android Chat Client application (other non-Android components of

the Chat platform are out of the scope of this document) and highlights how to address typical issues such

as activating an agent and making it interact with Android Activities.

http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf
http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf
http://jade.tilab.com/doc/tutorials/JADEAdmin/index.html
http://developer.android.com/resources/tutorials/hello-world.html
http://jade.tilab.com/papers-examples.htm

Page 4

2 INSTALLING AND RUNNING THE CHAT PLATFORM

As depicted in Figure 1 the Chat platform described in this tutorial is composed of three modules:

Android Chat Client – This is an Android application that allows participating to the chat from an

Android device. It includes an Android GUI and an agent managing the interactions with other

components.

Standard Chat Client – This is a normal Java application that allows participating to the chat from a PC

or any device supporting a standard JVM. It includes a SWING GUI and an agent managing the

interactions with other components.

Chat Server – This is the platform Main Container with an agent (called ChatManagerAgent) on top that

keeps track of all agents currently connected to the chat.

Network

Standard Chat Client

ChatManager

Agent

AMS DF

Main Container

ChatClient

Agent

Android Chat Client

ChatClient

Agent

Android Chat Client GUI

Standard Chat Client GUI

Figure 1. Chat Client-Server Platform components

2.1 Downloading the Chat platform software

The Chat platform can be downloaded from the JADE web site at http://jade.tilab.com/papers-

examples.htm. The distribution consists of two archives whose structure is described below.

The chatStandard.zip file contains the following items:

standard

 |--build.xml ANT build file;

 |--bin

 | |--startChatParticipant.bat DOS client startup file;

 | |--startChatParticipant.sh Unix client startup file;

 | |--startPlatform.bat DOS Main Container + ChatManager startup file;

 | |--startPlatform.sh Unix Main Container + ChatManager startup file;

 |

 |--lib

 | |--jade.jar JADE library;

 | |--chatOntology.jar Chat Ontology classes;

 | |--chatStandard.jar Standard Chat client and ChatManager classes;

http://jade.tilab.com/papers-examples.htm
http://jade.tilab.com/papers-examples.htm

Page 5

 |

 |--src

 |--... (Standard Chat client and ChatManager sources)

The chatOntology.jar contains precompiled classes implementing concepts, predicates and actions that

must be known by agents in the system. These classes are packaged in a separate jar file since thy must be

available in all modules.

The chatStandard.jar file contains precompiled classes (but ontology ones) implementing the Standard

Chat Client and Chat Manager Agent modules;

The chatAndroid.zip file contains the following items:

android

 |--build.xml ANT build file;

 |--build.properties Build properties;

 |--default.properties Android managed build properties;

 |--local.properties Android managed configuration properties;

 |--proguard.cfg Android managed configuration;

 |--bin

 | |--chatClient.apk Android Chat client application;

 |

 |--libs

 | |--JadeAndroid.jar JadeAndroid library;

 | |--chatOntology.jar Chat Ontology classes (same as in chatStandard.zip);

 |

 |--res

 | |--... (android gui resources)

 |

 |--src

 |--... (android client sources)

The chatClient.apk file is the Android Chat client application ready to be installed in an Android device.

2.2 Starting the Chat Server

To launch the Chat Server (i.e. the Main Container with the Chat Manager agent on top) execute the

following steps:

1. From a shell/DOS-prompt move to the folder where you decompressed the chatStandard.zip

archive and then down to standard/bin;

2. Run the startPlatform.bat batch file for Windows or startPlatform.sh for Linux. The RMA (Jade

Remote Management Agent) GUI should appear as depicted in Figure 2.

Page 6

Figure 2. The Main Container with the Chat Manager Agent

2.3 Starting Standard Chat clients

To populate the chat you can run one or more client agents as follows:

1. From a shell/DOS-prompt move to the folder where you decompressed the chatStandard.zip

archive and then down to standard/bin;

2. Run the startChatParticipant.bat batch file for Windows or startChatParticipant.sh for Linux.

The Standard Chat Client GUI should appear as depicted in Figure 3.

3. Insert a nickname and click OK.

Page 7

Figure 3. The Standard Chat Client GUI

2.4 Installing and Starting the Android Chat Client

To start the Chat Client on the Android emulator it is necessary to setup the Android SDK, create an AVD

with at least an API level 10 (Android 2.3.3) and run the emulator.

Alternatively, if you have a real android device, be sure the appropriate drivers where installed and

connect it to your computer via data cable (usually USB).

NOTE – If you use a real device, remember that the Android Chat Client will have to connect to the Main

Container. Therefore be sure your device is configured so that it is possible to open a TCP connection with

the PC where the Main Container is running over either a LAN or the Internet.

How performing the above operations is out of the scope of this tutorial. Refer to the Android

documentation for more details.

At this point install the Chat Client on your Android emulator/device as follows:

1. From a shell/DOS-prompt move to the folder where you decompressed the chatAndroid.zip

archive and then down to android/bin;

2. Run the android SDK command;

adb install chatClient.apk

A new Application should appear on your device called ‘Jade Chat’ as shown in Figure 4.

Page 8

Figure 4. The applications list on the android emulator

Click on the Jade Chat icon to start the Chat Client. The screen depicted in Figure 5 should appear.

Figure 5. The Android Chat Client Login form

If you are using a real device, before entering a nickname, you typically need to setup your application with Main

Container parameters (host and port). In order to do that click on the ‘Menu’ button and select ‘settings’. Then enter

the Main Container host and port asdepicted in Figure 6.

Page 9

Figure 6. The Configuration form

Having inserted your nick name, you can start to chat.

Figure 7. The chat form

Page 10

In order to see the list of users currently participating to the chat, click on the ‘Menu’ button and select the

‘participants’ menu item.

Figure 8. The participants list

Page 11

3 BUILDING THE ANDROID CHAT CLIENT WITH ECLIPSE

In this section we describe how to setup the Eclipse project to compile and modify the code of the Android

Chat client application. As usual we assume that the Android Developer Toolkit (ADT) plugin has already

been installed into the Eclipse IDE and a target Android Virtual Device (AVD) with at least platform 2.3.3

(API 10) has been defined.

NOTE 1 - In previous section you already installed the Android Chat Client application in your Android

Emulator/device. Before going on in this section it is suggested to uninstall it. This is because, since in this

section the application will be recompiled in your local environment, very likely the signature of the

resulting APK file will be different from that of the chatClient.apk included in the distribution package. If

this is the case, the installation will fail. In order to uninstall the Android Chat Client application, perform

the following steps:

1. From a DOS-shell prompt, move to the folder where you decompressed the chatAndroid.zip

archive and then go to android/bin;

2. Run the android SDK command;

adb uninstall chat.client.gui

NOTE 2 - Some screenshots may be slightly different depending on the versions of Eclipse and ADT.

Those included in this document have been generated using Eclipse Indigo Service Release 1 and the

Android Development Toolkit 14.0.0.

3.1 Creating the Android Chat client Project

In Eclipse, select “File > New > Other... ”; The resulting dialog should have a folder labelled "Android"

which should contain "Android Project" as depicted in Figure 9.

Page 12

Figure 9. Creating an Android Project in Eclipse

Select "Android Project" and click “Next”.

Figure 10. Project general information setting step

Type “chatClient” as Project Name, and flag (if not yet done) the “Use default location” checkbox to

create the project in your default workspace. Then click “Next”.

Page 13

Figure 11. SDK selection step

Choose the “Android 2.3.3” platform SDK and click “Next”.

Figure 12. Application infos

Page 14

Enter “chatClient” (again) as Application name, “chat.client.gui” as Package Name and choose 10

(android 2.3.3) as Minimum SDK. Unflag the “Create Activity” checkbox (since we already have all the

sources available, we don’t want Eclipse to create new empty classes for us) and click “Finish”.

3.2 Copying Android Chat client sources in the project

In previous step we created an empty Android Chat Client project. Now we have to fill it with the sources

and other resources included in the demo distribution package. To do that copy the content of the

android folder in the chatAndroid.zip archive, to the folder chatClient created by Eclipse in your

eclipse workspace. Overwrite all existing files.

In Eclipse refresh (press F5) your project three and verify that you get a structure similar to that depicted

in Figure .

Figure 13. Android Chat Client project structure

3.3 Running the project

At this point we are ready to compile (if the Build Automatically option is selected Eclipse already did

that in background) and run the Android Chat Client. First of all be sure the Chat Server is up and running

on your PC. If this is not the case start it as described in section 2.2. Then, from the Eclipse Package

Explorer, right-click on the chatClient project root folder and choose “Run as” →“Android Application”

Page 15

4 HOW THE CHAT APPLICATION WORKS

In this section the internal workings of the Android Chat Client application are described. First the

application structure briefly is presented. Then we focus on JADE-Android specific aspects and in

particular on:

- how to start the JADE runtime and to create agents on it;

- how to implement interactions between user interface classes and agents in both directions.

On the other hand, how the Chat Client application uses the Android API and interacts with the framework is

outside the scope of this tutorial.

4.1 Application structure

4.1.1 Resources

The user interface consists of four screens: the login screen, the configuration screen, the effective chat

screen and an information screen that shows the list of the people currently participating to the chat. Those

screens were defined in android using the following resources:

 login layout (see Figure 5);

 configuration layout (see Figure 6);

 chat layout (see Figure 7);

 participants list layout (see Figure 8);

 setting menu activated from the login layout;

 chat options menu activated from the chat layout; and

 string definition file;

Those files are located in the res folder of the android project according to the structure below:

chatClient/

 |- src/

 | | …

 |- res/

 |- layout/

 | |- main.xml

 | |- chat.xml

 | |- participant.xml

 | |- participants.xml

 | |- settings.xml

 |- menu/

 | |- main_menu.xml

 | |- chat_menu.xml

 |- values/

 |- strings.xml

The login screen defined in main.xml layout consists of an EditText component used to enter a nickname

and a Button used to log into the chat application. To complete the screen functionalities we need to

define a menu, named main_menu.xml with additional options to access the configuration screen and to

exit the application.

Page 16

The chat layout defined in chat.xml is composed of a ScrollView component with a TextView inside that

shows the messages exchanged in the chat. In the bottom part of the layout two controls are located: an

EditText and a Button to allow the user to write and send messages. From the chat screen it is possible to

show the list of participants or clear the messages received by means of the actions defined in the

chat_menu.xml.

The participants list, located in the participants.xml layout, uses the native android layout used to show

the contacts list and consists of a ListView inside a LinearLayout. Each line of the ListView is

customized to show only the nickname of the participant. The line was customized in the participant.xml

layout.

The configuration screen consists of two TextView used to insert the IP address and port of the Main

Container. This is defined in the settings.xml layout.

All the ids related strings are defined in the file string.xml.

4.1.2 Classes

The application code is organized in two packages called chat.client.gui and chat.client.agent

according to the following structure.

chatClient

 |--src

 | |--chat

 | |--gui

 | | |--MainActivity.java

 | | |--ChatActivity.java

 | | |--ChatApplication.java

 | | |--ParticipantsActivity.java

 | | |--SettingsActivity.java

 | |

 | |--agent

 | |--ChatClientAgent.java

 | |--ChatClientInterface.java

 |

 |-- AndroidManifest.xml

The chat.client.gui package contains Android related classes such as the Application class and

Activity classes. The chat.client.agent package contains the class of the Chat Client Agent and the

interface that it provides to the GUI components.

As usual for Android applications the AndroidManifest.xml defines the application functionalities within

the Android OS.

Page 17

4.2 Starting JADE and creating agents

Consistent with the Android architecture, the JADE runtime is wrapped by an Android service. More

specifically, the jadeAndroid.jar library includes two service classes jade.android.RuntimeService

and jade.android.MicroRuntimeService that wrap a full container and a split container,

respectively. In this tutorial we use a split container that, in general, is the suggested approach when

working with mobile devices (see the LEAP User Guide for more details). The MicroRuntimeService is

declared in the Android manifest as below.

<application ... android:name="ChatApplication">

 <service android:name="jade.android.MicroRuntimeService" />

 …

</application>

4.2.1 Binding to the service

The first operation to activate the JADE runtime from an Android Activity is to bind to the MicroRuntimeService.

As a result a jade.android.MicroRuntimeServiceBinder object is retrieved such that it will be possible

to perform all JADE management operations. The code below (taken from the startChat() method of the

chat.client.gui.MainActivity class) shows how this is done.

serviceConnection = new ServiceConnection() {

 public void onServiceConnected(ComponentName className, IBinder service) {

 // Bind successful

 microRuntimeServiceBinder = (MicroRuntimeServiceBinder) service;

 ...

 };

 public void onServiceDisconnected(ComponentName className) {

 // Bind unsuccessful

 microRuntimeServiceBinder = null;

 }

};

bindService(new Intent(getApplicationContext(), MicroRuntimeService.class),

 serviceConnection,

 Context.BIND_AUTO_CREATE);

4.2.2 Starting a JADE split Container

Having retrieved the MicroRuntimeServiceBinder object it is now possible to start a JADE Split

Container as shown in the code snipped below (taken from the startContainer() method of the

chat.client.gui.MainActivity class).

Properties pp = new Properties();

pp.setProperty(Profile.MAIN_HOST, host);

pp.setProperty(Profile.MAIN_PORT, port);

pp.setProperty(Profile.JVM, Profile.ANDROID);

…
microRuntimeServiceBinder.startAgentContainer(pp,

 new RuntimeCallback<Void>() {

 @Override

 public void onSuccess(Void thisIsNull) {

 // Split container startup successful

Page 18

 ...

 }

 @Override

 public void onFailure(Throwable throwable) {

 // Split container startup error

 }

 });

As usual the host and port where the Main Container is running (as well as other configuration options)

must be specified in a Properties object.

According to the Android philosophy all operations are asynchronous and the result is made available by

means of a jade.android.RuntimeCallback object.

4.2.3 Starting an Agent

Once the JADE runtime is up and running it is possible to start the Chat Client Agent on it as shown in the

code snippet below (taken from the startAgent() method of the chat.client.gui.MainActivity

class)

microRuntimeServiceBinder.startAgent(nickname,

 ChatClientAgent.class.getName(),

 new Object[] { getApplicationContext() },

new RuntimeCallback<Void>() {

 @Override

 public void onSuccess(Void thisIsNull) {

 // Agent successfully started

 ...

}

 @Override

 public void onFailure(Throwable throwable) {

 // Agent startup error

 ...

 }

 });

Note that the ApplicationContext is passed to the agent as argument. This will allow the agent to access

Android API when needed (see for instance section 4.4).

4.3 GUI components to Agent interactions

The cleanest way to implement interactions between GUI components (mainly Android Activities) and the

agent is to exploit the Object-to-Agent (O2A for short) interface mechanism introduced in version 4.1.1 of

JADE. This allows an agent to expose one or more interfaces that can be retrieved by external

components. External components can trigger agent tasks by invoking the methods of these interfaces and

thus retrieve agent information and so on according to the requirements of the application.

In the Chat Client application the Chat Client Agent exposes the ChatClientInterface as shown in

the code snippet below:

Page 19

public interface ChatClientInterface {

 public void handleSpoken(String s);

 public String[] getParticipantNames();

}

The handleSpoken() method is used in the ChatActivity to make the agent forward a chatted

message to all chat participants.

The getParticipantNames() is used in the ParticipantsActivity to show the list of people

currently participating to the chat.

The following line, taken from the agent setup() method, shows how the Chat Client Agent exposes the

O2A interface described above.

registerO2AInterface(ChatClientInterface.class, this);

Similarly the following line, taken from the onCreate() method of the ChatActivity, shows how GUI

components can retrieve the O2A interface exposed by the Chat Client Agent.

chatClientIf = MicroRuntime.getAgent(nickname).getO2AInterface(ChatClientInterface.class);

When the user types a message and clicks on the Send button of the ChatActivity the following code is

triggered.

String message = messageField.getText().toString();

if (message != null && !message.equals("")) {

 chatClientIf.handleSpoken(message);

 messageField.setText("");

}

4.4 Agent to GUI components interactions

When working with JADE, it is often the case that an agent must proactively show some information in

the GUI. In the Chat Client application this is the case, for instance, when a message chatted by another

participant is received by the agent and must be shown in the ChatActivity. The suggested way to

implement this kind of interaction is to exploit the mechanism that Android provides to allow different

components to interact. This is based on broadcasting so called Intents that can be received by interested

components. The code snippet below shows how the ChatClientAgent creates and broadcasts an Intent

to notify the GUI that a message has been received.

Intent broadcast = new Intent();

broadcast.setAction("jade.demo.chat.REFRESH_CHAT");

broadcast.putExtra("sentence", speaker + ": " + sentence + "\n");

logger.info("Sending broadcast " + broadcast.getAction());

context.sendBroadcast(broadcast);

Where context is the field where the agent stored the ApplicationContext received as startup argument

(see section 4.2.3).

Page 20

The code snippets below show how the ChatActivity registers a receiver to intercept Intents carrying

received sentences and handles them, respectively:

myReceiver = new MyReceiver();

IntentFilter refreshChatFilter = new IntentFilter();

refreshChatFilter.addAction("jade.demo.chat.REFRESH_CHAT");

registerReceiver(myReceiver, refreshChatFilter);

…

private class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 if (action.equalsIgnoreCase("jade.demo.chat.REFRESH_CHAT")) {

 TextView chatField = (TextView) findViewById(R.id.chatTextView);

 chatField.append(intent.getExtras().getString("sentence"));

 scrollDown();

 }

 }

}

The tutorial ends here. Feel free to use the demo software and modify it as you like. Have fun!

