
October 27, 2006

BDI Agents and

AgentSpeak(L)

Romelia Plesa

PhD Candidate

SITE, University of Ottawa

Presentation Outline

 BDI

 AgentSpeak(L) – Basic Notions

 AgentSpeak(L) – Syntax

 AgentSpeak(L) – Informal Semantics

 AgentSpeak(L) – Example

 Jason

BDI Agents

 Systems that are situated in a changing environment

 Receive continuous perceptual input

 Take actions to affect their environment

From the various options and alternatives available to it

at a certain moment in time, the agent needs to select

the appropriate actions or procedures to execute.

The selection function should enable the system to achieve its

objectives, given

 the computational resources available to the system

 the characteristics of the environment in which the system is situated.

BDI Agents

 two types of input data required for the selection function:

 Beliefs:
 represent the characteristics of the environment

 are updated appropriately after each sensing action.

 can be viewed as the informative component of the
system.

 Desires
 contain the information about the objectives to be

accomplished, the priorities and payoffs associated with
the various objectives

 can be thought as representing the motivational state of
the system.

BDI Agents

 Intentions

 represent the currently chosen course of action (the output

of the most recent call to the selection function)

 capture the deliberative component of the system.

BDI Agents

BELIEFS DESIRES

SELECTION

FUNCTION

INTENTION

AgentSpeak(L)

 attempt to bridge the gap between theory and practice

 a model that shows a one-to-one correspondence between

the model theory, proof theory and the abstract interpreter.

 natural extension of logic programming for the BDI agent

architecture

 provides an elegant abstract framework for programming BDI

agents.

 based on a restricted first-order language with events and actions.

 the behavior of the agent (i.e., its interaction with the environment)

is dictated by the programs written in AgentSpeak(L).

AgentSpeak(L) and B-D-Is

 An agent’s belief state is the current state of the agent,

which is a model of itself, its environment, and other

agents.

 The agent’s desires are the states that the agent wants

to bring about based on its external or internal stimuli.

 When an agent commits to a particular set of plans to

achieve some goal, these partially instantiated plans are

referred to as an intention associated with that goal.

Thus, intentions are active plans that the agent adopts

in an attempt to achieve its goals.

AgentSpeak(L) - Basic Notions

 The specification of an agent in AgentSpeak(L) consists of:

 a set of base beliefs

 facts in the logic programming sense

 a set of plans.

 context-sensitive, event-invoked recipes that allow

hierarchical decomposition of goals as well as the

execution of actions with the purpose of

accomplishing a goal.

AgentSpeak(L) - Basic Notions

 belief atom

 is a first-order predicate in the usual notation

 belief atoms or their negations are termed belief

literals.

AgentSpeak(L) - Basic Notions

 goal

 is a state of the system, which the agent wants to

achieve.

 two types of goals:

 achievement goals

 predicates prefixed with the operator “!”

 state that the agent wants to achieve a state of the world

where the associated predicate is true.

 in practice, these initiate the execution of subplans.

 test goals

 predicates prefixed with the operator‘?’

 returns a unification for the associated predicate with one of

the agent’s beliefs; it fails if no unification is found.

AgentSpeak(L) - Basic Notions

 triggering event

 defines which events may initiate the execution of a

plan.

 an event can be

 internal, when a subgoal needs to be achieved

 external, when generated from belief updates as a result of

perceiving the environment.

 two types of triggering events:

 related to the addition (‘+’) and deletion (‘-’) of attitudes

(beliefs or goals).

AgentSpeak(L) - Basic Notions

 Plans
 refer to the basic actions that an agent is able to perform on its

environment.

Where:

 te - triggering event (denoting the purpose for that plan)

 ct - a conjunction of belief literals representing a context.

 The context must be a logical consequence of that agent’s current

beliefs for the plan to be applicable.

 h - a sequence of basic actions or (sub)goals that the agent has to

 achieve (or test) when the plan, if applicable, is chosen for

 execution.

p ::= te : ct <- h

+concert (A,V) : likes(A) <-

 !book_tickets(A,V).

+!book_tickets(A, V) :

 ¬busy(phone)

 <- call(V);

 …;

 !choose seats(A,V).

Triggering

event
Context

Achievement

goal added

Basic action

AgentSpeak(L) - Basic Notions

 Intentions
 plans the agent has chosen for execution.

 Intentions are executed one step at a time.

 A step can
 query or change the beliefs

 perform actions on the external world

 suspend the execution until a certain condition is met

 submit new goals.

 The operations performed by a step may generate
new events, which, in turn, may start new intentions.

 An intention succeeds when all its steps have been
completed. It fails when certain conditions are not met
or actions being performed report errors.

AgentSpeak(L) Syntax
ag ::= bs ps

bs ::= at1. … atn. (n0)

at ::= P(t1, … tn) (n0)

ps ::= p1 … pn (n1)

p ::= te : ct <- h.

te ::= +at | -at | +g | -g

ct ::= true | l1 & … & ln (n1)

h ::= true | f1 ; … ; fn (n1)

l ::= at | not (at)

f ::= A(t1, … tn) | g | u (n0)

g ::= !at | ?at

u ::= +at | -at

AgentSpeak(L)- Informal Semantic

 The interpreter for AgentSpeak(L) manages

 a set of events

 a set of intentions

 three selection functions.

AgentSpeak(L)- Informal Semantic

Events

 Events, which may start off the execution of
plans that have relevant triggering events,
can be:

external, when originating from perception of the
agent’s environment (i.e., addition and deletion of
beliefs based on perception are external events).
External events create new intentions.

 internal, when generated from the agent’s own
execution of a plan (i.e., a subgoal in a plan
generates an event of type “addition of
achievement goal”).

AgentSpeak(L)- Informal Semantic

Intentions

 Intentions are particular courses of actions to

which an agent has committed in order to handle

certain events. Each intention is a stack of

partially instantiated plans

AgentSpeak(L)- Informal Semantic

Selection Functions

 SE (the event selection function)

 selects a single event from the set of events

 SO

 selects an “option” (i.e., an applicable plan) from a set of

applicable plans

 SI

 selects one particular intention from the set of

intentions.

 The selection functions are agent-specific, in the

sense that they should make selections based on

an agent’s characteristics.

AgentSpeak(L)- Informal Semantic

AgentSpeak(L)- Informal Semantic

AgentSpeak(L) Example

 During lunch time,

forward all calls to Carla.

 When I am busy,

incoming calls from

colleagues should be

forwarded to Denise.

ALICE

AgentSpeak(L) Example

Beliefs

user(alice).

user(bob).

user(carla).

user(denise).

~status(alice, idle).

status(bob, idle).

colleague(bob).

lunch_time(“11:30”).

AgentSpeak(L) Example

Plans
user(alice).

user(bob).

user(carla).

user(denise).

~status(alice, idle).

status(bob, idle).

colleague(bob).

lunch_time(“11:30”).

“During lunch time, forward all calls to Carla”.

+invite(X, alice) : lunch_time(t)

!call_forward(alice, X, carla). (p1)

“When I am busy, incoming calls from

colleagues should be forwarded to Denise”.

+invite(X, alice) :

 colleague(X)

!call_forward_busy(alice,X,denise).

 (p2)

+invite(X, Y): true connect(X,Y).

 (p3)

AgentSpeak(L) Example

Plans
user(alice).

user(bob).

user(carla).

user(denise).

~status(alice, idle).

status(bob, idle).

colleague(bob).

lunch_time(“11:30”).

+invite(X, alice) : lunch_time(t) !call_forward(alice, X, carla). (p1)

+invite(X, alice) : colleague(X) !call_forward_busy(alice,X,denise).(p2)

+invite(X, Y): true connect(X,Y). (p3)

+!call_forward(X, From, To) : invite(From, X)

 +invite(From, To), - invite(From,X) (p4)

+!call_forvard_busy(Y, From, To) : invite(From, Y)&

not(status(Y, idle)))

 +invite(From, To), - invite(From,Y). (p5)

AgentSpeak(L) Example
user(alice).

user(bob).

user(carla).

user(denise).

~status(alice, idle).

status(bob, idle).

colleague(bob).

lunch_time(“11:30”).

+invite(X, alice) : lunch_time(t)

 !call_forward(alice, X, carla). (p1)

+invite(X, alice) : colleague(X)

 !call_forward_busy(alice,X,denise). (p2)

+invite(X, Y): true connect(X,Y). (p3)

+!call_forward(X, From, To) : invite(From, X)

 +invite(From, To), - invite(From,X) (p4)

+!call_forvard_busy(Y, From, To) : invite(From, Y)&
not(status(Y, idle)))

 +invite(From, To), - invite(From,Y). (p5)

Execution - 1

 a new event is sensed from the environment,
+invite(Bob, Alice) (there is a call for Alice from Bob).

 There are three relevant plans for this event (p1, p2 and p3)

 the event matches the triggering event of those three plans.

Relevant Plans Unifier

p1: +invite(X, alice) : lunch_time(t)

 !call_forward(alice, X, carla)

p2: +invite(X, alice) : colleague(Bob)

 !call_forward_busy(alice, X, denise).

{X=bob}

p3 : +invite(X, Y): true connect(X,Y). {Y=alice, X=bob}

Execution - 2
 only the context of plan p2 is satisfied - colleague(bob) => p2 is

applicable.

 a new intention based on this plan is created in the set of intentions,

because the event was external, generated from the perception of the

environment.

 The plan starts to be executed. It adds a new event, this time an internal
event: !call_forward_busy(alice,bob,denise).

Intention ID Intension Stack Unifier

1 +invite(X,alice):colleague(X)

<- !call_forward_busy(alice,X,denise)

{X=bob}

Execution - 3

 a plan relevant to this new event is found (p5):

Relevant Plans Unifier

p5: +!call_forward_busy(Y, From, To) :

invite(From, Y) & not(status(Y, idle)))

 +invite(From, To),

 - invite(From,Y).

{From=bob,

Y=alice,

To=denise}

 p5 has the context condition true, so it becomes an applicable plan and it

is pushed on top of intention 1 (it was generated by an internal event)

Intention

ID

Intension Stack Unifier

1 +!call_forward_busy(Y,From,To) :

invite(From,Y) & not status(Y,idle)

<- +invite(From,To); -invite(From,Y)

{From=bob,

Y=alice,

To=denise}

+invite(X,alice) : colleague(X)

<- !call_forward_busy(alice,X,denise)

{X=bob}

Execution - 4
 A new internal event is created, +invite(bob, denise).

 three relevant plans for this event are found, p1, p2 and p3.

 However, only plan p3 is applicable in this case, since the others don’t
have the context condition true.

 The plan is pushed on top of the existing intention.

Intention

ID

Intension Stack Unifier

1 +invite(X,Y) : <- connect(X,Y) {Y=denise,

X=bob}

+!call_forward_busy(Y,From,To) :

invite(From,Y) & not status(Y,idle)

<- +invite(From,To); -invite(From,Y)

{From=bob,

Y=alice,

To=denise}

+invite(X,alice) : colleague(X)

<- !call_forward_busy(alice,X,denise)

{X=bob}

Execution - 5
 on top of the intention is a plan whose body contains an action.

 the action is executed, connect(bob, denise) and is removed from
the intention.

 When all formulas in the body of a plan have been removed (i.e., have
been executed), the whole plan is removed from the intention, and so is
the achievement goal that generated it.

Intention ID Intension Stack Unifier

1 +!call_forward_busy(Y,From,To) :

invite(From,Y) & not status(Y,idle)

<- -invite(From,Y)

{From=bob,

Y=alice,

To=denise}

+invite(X,alice) : colleague(X)

<- !call_forward_busy(alice,X,denise)

{X=bob}

 The only thing that remains to be done is –invite(bob, alice) (this event is

removed from the beliefs base).

 This ends a cycle of execution, and the process starts all over again,

checking the state of the environment and reacting to events.

Jason

 a fully-fledged interpreter for AgentSpeak(L)

 many extensions, providing a very expressive

programming language for agents.

 allows configuration of a multi-agent system to run on

various hosts.

 implemented in Java (thus it is multi-platform)

 available Open Source and is distributed under GNU

LGPL.

 http://jason.sourceforge.net/

Jason characteristics

 support for developing Environments (Java)

 the possibility to run a multi-agent system
distributed over a network

 fully customisable (in Java) selection functions,
trust functions, and overall agent architecture
(perception, belief-revision, inter-agent
communication, and acting)

 a library of essential "internal actions"

 straightforward extensibility by user-defined
internal actions, which are programmed in Java.

Conclusion

 AgentSpeak(L) has many similarities with

traditional logic programming, which would favor

its becoming a popular language

 it proves quite intuitive for those familiar with

logic programming.

 it has a neat notation, thus providing quite

elegant specifications of BDI agents.

